
1



DISCLAIMER: This book is NOT yet endorsed/sponsored by the Richard Stallman or the Free 
Software Foundation! 

All of the compiled text in this book are at gnu.org & are licensed under Creative 
Commons Attribution-NoDerivatives 4.0 International 

2



Chapter I: What is Free Software?	 
5
Chapter II: Free Software Is Even More Important Now	 
14
Chapter III: Selling Free Software	 
20
Chapter IV: Why programs must not limit the freedom to run them	 
23
Chapter V: Your Freedom Needs Free Software	 
26
Chapter VI: Why Software Should Not Have Owners	 
28
Chapter VII: Tivoization	 
32
Chapter VIII: When Free Software Isn't (Practically) Superior	 
34
Chapter IX: Applying the Free Software Criteria	 
37
Chapter X: Imperfection is not the same as oppression	 
42
Chapter XI: Android and Users' Freedom	 
44
Chapter XII: Free Software is More Reliable!	 
48
Chapter XIII: Why Free Software Needs Free Documentation	 
50
Chapter XIV: Should Rockets Have Only Free Software? Free Software and 
Appliances	 
53
Chapter XV: Free Hardware and Free Hardware Designs	 
56
Chapter XVI: What Does It Mean for Your Computer to Be Loyal?	 
65
Chapter XVII: Network Services Aren't Free or Nonfree; They Raise Other 
Issues	 
68
Chapter XVIII: Regarding Gnutella	 
71
Chapter XIX: When Free Software Depends on Nonfree	 
72
Chapter XX: Is It Ever a Good Thing to Use a Nonfree Program?	 
74
Chapter XXI: The Free Software Movement and UDI	 
77
Chapter XXII: Why Open Source Misses the Point of Free Software	 
79
Chapter XXIII: FLOSS and FOSS	 
87
Chapter XXIV: Measures Governments Can Use to Promote Free Software	


88
Chapter XXV: Why Schools Should Exclusively Use Free Software	 
93

3



Chapter XXVI: Technological Neutrality and Free Software	 
96
Chapter XXVII: The Moral and the Legal	 
97
Chapter XXVIII: Saying No to unjust computing even once is help	 
99
Chapter XXIX: Motives For Writing Free Software	 
101
Chapter XXX: Why Copyleft?	 
103
Chapter XXXI: Copyleft: Pragmatic Idealism	 
104
Chapter XXXII: The JavaScript Trap	 
107
Chapter XXXIII: Giving the Software Field Protection from Patents	 
111
Chapter XXXIV: Misinterpreting Copyright—A Series of Errors	 
114
Chapter XXXV: Did You Say “Intellectual Property”? It's a Seductive Mirage	


125
Chapter XXXVI: Opposing Digital Rights Mismanagement (Or Digital 
Restrictions Management, as we now call it)	 
129
Chapter XXXVII: Can You Trust Your Computer?	 
131
Chapter XXXVIII: Who Does That Server Really Serve?	 
137
Chapter XXXIX: Words to Avoid (or Use with Care) Because They Are 
Loaded or Confusing	 146

4



Chapter I: What is Free Software? 

“Free software” means software that respects users' freedom and community. Roughly, it means that 
the users have the freedom to run, copy, distribute, study, change and improve the software. 
Thus, “free software” is a matter of liberty, not price. To understand the concept, you should think of 
“free” as in “free speech,” not as in “free beer.” We sometimes call it “libre software,” borrowing the 
French or Spanish word for “free” as in freedom, to show we do not mean the software is gratis. 
You may have paid money to get copies of a free program, or you may have obtained copies at no 
charge. But regardless of how you got your copies, you always have the freedom to copy and change the 
software, even to sell copies . 1

We campaign for these freedoms because everyone deserves them. With these freedoms, the users (both 
individually and collectively) control the program and what it does for them. When users don't control 
the program, we call it a “nonfree” or “proprietary” program. The nonfree program controls the users, 
and the developer controls the program; this makes the program an instrument of unjust power . 2

“Open source” is something different: it has a very different philosophy based on different values. Its 
practical definition is different too, but nearly all open source programs are in fact free. We explain the 
difference in Why “Open Source” misses the point of Free Software . 3

The Free Software Definition 

The free software definition presents the criteria for whether a particular software program qualifies as 
free software. From time to time we revise this definition, to clarify it or to resolve questions about 
subtle issues. See the History section  below for a list of changes that affect the definition of free 4

software. 

The four essential freedoms 

A program is free software if the program's users have the four essential freedoms: [1]  5

• The freedom to run the program as you wish, for any purpose (freedom 0). 
• The freedom to study how the program works, and change it so it does your computing as you 

wish (freedom 1). Access to the source code is a precondition for this. 
• The freedom to redistribute copies so you can help others (freedom 2). 
• The freedom to distribute copies of your modified versions to others (freedom 3). By doing this 

you can give the whole community a chance to benefit from your changes. Access to the source 
code is a precondition for this. 

5

https://www.gnu.org/philosophy/selling.html
https://www.gnu.org/philosophy/free-software-even-more-important.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/free-sw.html#History
https://www.gnu.org/philosophy/free-sw.html#f1


A program is free software if it gives users adequately all of these freedoms. Otherwise, it is nonfree. 
While we can distinguish various nonfree distribution schemes in terms of how far they fall short of 
being free, we consider them all equally unethical. 

In any given scenario, these freedoms must apply to whatever code we plan to make use of, or lead 
others to make use of. For instance, consider a program A which automatically launches a program B 
to handle some cases. If we plan to distribute A as it stands, that implies users will need B, so we need to 
judge whether both A and B are free. However, if we plan to modify A so that it doesn't use B, only A 
needs to be free; B is not pertinent to that plan. 

Free software can be commercial 

“Free software” does not mean “noncommercial.” On the contrary, a free program must be available 
for commercial use, commercial development, and commercial distribution. This policy is of 
fundamental importance—without this, free software could not achieve its aims. 

We want to invite everyone to use the GNU system, including businesses and their workers. That 
requires allowing commercial use. We hope that free replacement programs will supplant comparable 
proprietary programs, but they can't do that if businesses are forbidden to use them. We want 
commercial products that contain software to include the GNU system, and that would constitute 
commercial distribution for a price. Commercial development of free software is no longer unusual; 
such free commercial software is very important. Paid, professional support for free software fills an 
important need. 

Thus, to exclude commercial use, commercial development or commercial distribution would hobble 
the free software community and obstruct its path to success. We must conclude that a program 
licensed with such restrictions does not qualify as free software. 

A free program must offer the four freedoms to any would-be user that obtains a copy of the software, 
who has complied thus far with the conditions of the free license covering the software in any previous 
distribution of it. Putting some of the freedoms off limits to some users, or requiring that users pay, in 
money or in kind, to exercise them, is tantamount to not granting the freedoms in question, and thus 
renders the program nonfree. 

Clarifying the Boundary Between Free and Nonfree 

In the rest of this article we explain more precisely how far the various freedoms need to extend, on 
various issues, in order for a program to be free. 

The freedom to run the program as you wish 

6



The freedom to run the program means the freedom for any kind of person or organization to use it on 
any kind of computer system, for any kind of overall job and purpose, without being required to 
communicate about it with the developer or any other specific entity. In this freedom, it is the user's 
purpose that matters, not the developer's purpose; you as a user are free to run the program for your 
purposes, and if you distribute it to other people, they are then free to run it for their purposes, but 
you are not entitled to impose your purposes on them. 

The freedom to run the program as you wish means that you are not forbidden or stopped from 
making it run. This has nothing to do with what functionality the program has, whether it is 
technically capable of functioning in any given environment, or whether it is useful for any particular 
computing activity. 

For example, if the code arbitrarily rejects certain meaningful inputs—or even fails unconditionally—
that may make the program less useful, perhaps even totally useless, but it does not deny users the 
freedom to run the program, so it does not conflict with freedom 0. If the program is free, the users can 
overcome the loss of usefulness, because freedoms 1 and 3 permit users and communities to make and 
distribute modified versions without the arbitrary nuisance code. 

“As you wish” includes, optionally, “not at all” if that is what you wish. So there is no need for a 
separate “freedom not to run a program.” 

The freedom to study the source code and make changes 

In order for freedoms 1 and 3 (the freedom to make changes and the freedom to publish the changed 
versions) to be meaningful, you need to have access to the source code of the program. Therefore, 
accessibility of source code is a necessary condition for free software. Obfuscated “source code” is not 
real source code and does not count as source code. 

Source code is defined as the preferred form of the program for making changes in. Thus, whatever 
form a developer changes to develop the program is the source code of that developer's version. 

Freedom 1 includes the freedom to use your changed version in place of the original. If the program is 
delivered in a product designed to run someone else's modified versions but refuse to run yours—a 
practice known as “tivoization” or “lockdown,” or (in its practitioners' perverse terminology) as 
“secure boot”—freedom 1 becomes an empty pretense rather than a practical reality. These binaries are 
not free software even if the source code they are compiled from is free. 

One important way to modify a program is by merging in available free subroutines and modules. If 
the program's license says that you cannot merge in a suitably licensed existing module—for instance, if 

7



it requires you to be the copyright holder of any code you add—then the license is too restrictive to 
qualify as free. 

Whether a change constitutes an improvement is a subjective matter. If your right to modify a program 
is limited, in substance, to changes that someone else considers an improvement, that program is not 
free. 

One special case of freedom 1 is to delete the program's code so it returns after doing nothing, or make 
it invoke some other program. Thus, freedom 1 includes the “freedom to delete the program.” 

The freedom to redistribute if you wish: basic requirements 

Freedom to distribute (freedoms 2 and 3) means you are free to redistribute copies, either with or 
without modifications, either gratis or charging a fee for distribution, to anyone anywhere . Being free 6

to do these things means (among other things) that you do not have to ask or pay for permission to do 
so. 

You should also have the freedom to make modifications and use them privately in your own work or 
play, without even mentioning that they exist. If you do publish your changes, you should not be 
required to notify anyone in particular, or in any particular way. 

Freedom 3 includes the freedom to release your modified versions as free software. A free license may 
also permit other ways of releasing them; in other words, it does not have to be a copyleft  license. 7

However, a license that requires modified versions to be nonfree does not qualify as a free license. 

The freedom to redistribute copies must include binary or executable forms of the program, as well as 
source code, for both modified and unmodified versions. (Distributing programs in runnable form is 
necessary for conveniently installable free operating systems.) It is OK if there is no way to produce a 
binary or executable form for a certain program (since some languages don't support that feature), but 
you must have the freedom to redistribute such forms should you find or develop a way to make them. 

Copyleft 

Certain kinds of rules about the manner of distributing free software are acceptable, when they don't 
conflict with the central freedoms. For example, copyleft (very simply stated) is the rule that when 
redistributing the program, you cannot add restrictions to deny other people the central freedoms. 
This rule does not conflict with the central freedoms; rather it protects them. 

In the GNU project, we use copyleft to protect the four freedoms legally for everyone. We believe there 
are important reasons why it is better to use copyleft . However, noncopylefted free software  is ethical 8 9

8

https://www.gnu.org/philosophy/free-sw.html#exportcontrol
https://www.gnu.org/licenses/copyleft.html
https://www.gnu.org/licenses/copyleft.html
https://www.gnu.org/philosophy/pragmatic.html
https://www.gnu.org/philosophy/categories.html#Non-CopyleftedFreeSoftware


too. See Categories of Free Software  for a description of how “free software,” “copylefted software” 10

and other categories of software relate to each other. 

Rules about packaging and distribution details 

Rules about how to package a modified version are acceptable, if they don't substantively limit your 
freedom to release modified versions, or your freedom to make and use modified versions privately. 
Thus, it is acceptable for the license to require that you change the name of the modified version, 
remove a logo, or identify your modifications as yours. As long as these requirements are not so 
burdensome that they effectively hamper you from releasing your changes, they are acceptable; you're 
already making other changes to the program, so you won't have trouble making a few more. 

Rules that “if you make your version available in this way, you must make it available in that way also” 
can be acceptable too, on the same condition. An example of such an acceptable rule is one saying that 
if you have distributed a modified version and a previous developer asks for a copy of it, you must send 
one. (Note that such a rule still leaves you the choice of whether to distribute your version at all.) Rules 
that require release of source code to the users for versions that you put into public use are also 
acceptable. 

A special issue arises when a license requires changing the name by which the program will be invoked 
from other programs. That effectively hampers you from releasing your changed version so that it can 
replace the original when invoked by those other programs. This sort of requirement is acceptable only 
if there's a suitable aliasing facility that allows you to specify the original program's name as an alias for 
the modified version. 

Export regulations 

Sometimes government export control regulations and trade sanctions can constrain your freedom to 
distribute copies of programs internationally. Software developers do not have the power to eliminate 
or override these restrictions, but what they can and must do is refuse to impose them as conditions of 
use of the program. In this way, the restrictions will not affect activities and people outside the 
jurisdictions of these governments. Thus, free software licenses must not require obedience to any 
nontrivial export regulations as a condition of exercising any of the essential freedoms. 

Merely mentioning the existence of export regulations, without making them a condition of the license 
itself, is acceptable since it does not restrict users. If an export regulation is actually trivial for free 
software, then requiring it as a condition is not an actual problem; however, it is a potential problem, 
since a later change in export law could make the requirement nontrivial and thus render the software 
nonfree. 

9

https://www.gnu.org/philosophy/categories.html


Legal considerations 

In order for these freedoms to be real, they must be permanent and irrevocable as long as you do 
nothing wrong; if the developer of the software has the power to revoke the license, or retroactively add 
restrictions to its terms, without your doing anything wrong to give cause, the software is not free. 

A free license may not require compliance with the license of a nonfree program. Thus, for instance, if 
a license requires you to comply with the licenses of “all the programs you use,” in the case of a user 
that runs nonfree programs this would require compliance with the licenses of those nonfree 
programs; that makes the license nonfree. 

It is acceptable for a free license to specify which jurisdiction's law applies, or where litigation must be 
done, or both. 

Contract-based licenses 

Most free software licenses are based on copyright, and there are limits on what kinds of requirements 
can be imposed through copyright. If a copyright-based license respects freedom in the ways described 
above, it is unlikely to have some other sort of problem that we never anticipated (though this does 
happen occasionally). However, some free software licenses are based on contracts, and contracts can 
impose a much larger range of possible restrictions. That means there are many possible ways such a 
license could be unacceptably restrictive and nonfree. 

We can't possibly list all the ways that might happen. If a contract-based license restricts the user in an 
unusual way that copyright-based licenses cannot, and which isn't mentioned here as legitimate, we 
will have to think about it, and we will probably conclude it is nonfree. 

The Free Software Definition in Practice 

How we interpret these criteria 

Note that criteria such as those stated in this free software definition require careful thought for their 
interpretation. To decide whether a specific software license qualifies as a free software license, we judge 
it based on these criteria to determine whether it fits their spirit as well as the precise words. If a license 
includes unconscionable restrictions, we reject it, even if we did not anticipate the issue in these 
criteria. Sometimes a license requirement raises an issue that calls for extensive thought, including 
discussions with a lawyer, before we can decide if the requirement is acceptable. When we reach a 
conclusion about a new issue, we often update these criteria to make it easier to see why certain licenses 
do or don't qualify. 

10



Get help with free licenses 

If you are interested in whether a specific license qualifies as a free software license, see our list of 
licenses . If the license you are concerned with is not listed there, you can ask us about it by sending us 11

email at <licensing@gnu.org>. 

If you are contemplating writing a new license, please contact the Free Software Foundation first by 
writing to that address. The proliferation of different free software licenses means increased work for 
users in understanding the licenses; we may be able to help you find an existing free software license 
that meets your needs. 

If that isn't possible, if you really need a new license, with our help you can ensure that the license really 
is a free software license and avoid various practical problems. 

Use the right words when talking about free software 

When talking about free software, it is best to avoid using terms like “give away” or “for free,” because 
those terms imply that the issue is about price, not freedom. Some common terms such as “piracy” 
embody opinions we hope you won't endorse. See Confusing Words and Phrases that are Worth 
Avoiding  for a discussion of these terms. We also have a list of proper translations of “free software”  12 13

into various languages. 

Another group uses the term “open source” to mean something close (but not identical) to “free 
software.” We prefer the term “free software” because, once you have heard that it refers to freedom 
rather than price, it calls to mind freedom. The word “open” never refers to freedom. 

Beyond Software 

Software manuals must be free , for the same reasons that software must be free, and because the 14

manuals are in effect part of the software. 

The same arguments also make sense for other kinds of works of practical use—that is to say, works 
that embody useful knowledge, such as educational works and reference works. Wikipedia  is the best-15

known example. 

Any kind of work can be free, and the definition of free software has been extended to a definition of 
free cultural works  applicable to any kind of works. 16

History 

11

https://www.gnu.org/licenses/license-list.html
https://www.gnu.org/licenses/license-list.html
mailto:licensing@gnu.org
https://www.gnu.org/philosophy/words-to-avoid.html
https://www.gnu.org/philosophy/words-to-avoid.html
https://www.gnu.org/philosophy/fs-translations.html
https://www.gnu.org/philosophy/free-doc.html
https://wikipedia.org/
http://freedomdefined.org/


From time to time we revise this Free Software Definition. Here is the list of substantive changes, along 
with links to show exactly what was changed. 

• Version 1.169: Explain more clearly why the four freedoms must apply to commercial activity. 
Explain why the four freedoms imply the freedom not to run the program and the freedom to 
delete it, so there is no need to state those as separate requirements. 

• Version 1.165: Clarify that arbitrary annoyances in the code do not negate freedom 0, and that 
freedoms 1 and 3 enable users to remove them. 

• Version 1.153: Clarify that freedom to run the program means nothing stops you from making 
it run. 

• Version 1.141: Clarify which code needs to be free. 
• Version 1.135: Say each time that freedom 0 is the freedom to run the program as you wish. 
• Version 1.134: Freedom 0 is not a matter of the program's functionality. 
• Version 1.131: A free license may not require compliance with a nonfree license of another 

program. 
• Version 1.129: State explicitly that choice of law and choice of forum specifications are allowed. 

(This was always our policy.) 
• Version 1.122: An export control requirement is a real problem if the requirement is nontrivial; 

otherwise it is only a potential problem. 
• Version 1.118: Clarification: the issue is limits on your right to modify, not on what 

modifications you have made. And modifications are not limited to “improvements” 
• Version 1.111: Clarify 1.77 by saying that only retroactive restrictions are unacceptable. The 

copyright holders can always grant additional permission for use of the work by releasing the 
work in another way in parallel. 

• Version 1.105: Reflect, in the brief statement of freedom 1, the point (already stated in version 
1.80) that it includes really using your modified version for your computing. 

• Version 1.92: Clarify that obfuscated code does not qualify as source code. 
• Version 1.90: Clarify that freedom 3 means the right to distribute copies of your own modified 

or improved version, not a right to participate in someone else's development project. 
• Version 1.89: Freedom 3 includes the right to release modified versions as free software. 
• Version 1.80: Freedom 1 must be practical, not just theoretical; i.e., no tivoization. 
• Version 1.77: Clarify that all retroactive changes to the license are unacceptable, even if it's not 

described as a complete replacement. 
• Version 1.74: Four clarifications of points not explicit enough, or stated in some places but not 

reflected everywhere: 
◦ “Improvements” does not mean the license can substantively limit what kinds of 

modified versions you can release. Freedom 3 includes distributing modified versions, 
not just changes. 

◦ The right to merge in existing modules refers to those that are suitably licensed. 
◦ Explicitly state the conclusion of the point about export controls. 

12

https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.168&r2=1.169
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.164&r2=1.165
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.152&r2=1.153
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.140&r2=1.141
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.134&r2=1.135
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.133&r2=1.134
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.130&r2=1.131
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.128&r2=1.129
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.121&r2=1.122
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.117&r2=1.118
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.110&r2=1.111
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.104&r2=1.105
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.91&r2=1.92
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.89&r2=1.90
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.88&r2=1.89
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.79&r2=1.80
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.76&r2=1.77
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.73&r2=1.74


◦ Imposing a license change constitutes revoking the old license. 
• Version 1.57: Add “Beyond Software” section. 
• Version 1.46: Clarify whose purpose is significant in the freedom to run the program for any 

purpose. 
• Version 1.41: Clarify wording about contract-based licenses. 
• Version 1.40: Explain that a free license must allow to you use other available free software to 

create your modifications. 
• Version 1.39: Note that it is acceptable for a license to require you to provide source for 

versions of the software you put into public use. 
• Version 1.31: Note that it is acceptable for a license to require you to identify yourself as the 

author of modifications. Other minor clarifications throughout the text. 
• Version 1.23: Address potential problems related to contract-based licenses. 
• Version 1.16: Explain why distribution of binaries is important. 
• Version 1.11: Note that a free license may require you to send a copy of versions you distribute 

to previous developers on request. 

There are gaps in the version numbers shown above because there are other changes in this page that 
do not affect the definition or its interpretations. For instance, the list does not include changes in 
asides, formatting, spelling, punctuation, or other parts of the page. You can review the complete list of 
changes to the page through the cvsweb interface . 17

Footnote 

1. The reason they are numbered 0, 1, 2 and 3 is historical. Around 1990 there were three 
freedoms, numbered 1, 2 and 3. Then we realized that the freedom to run the program needed 
to be mentioned explicitly. It was clearly more basic than the other three, so it properly should 
precede them. Rather than renumber the others, we made it freedom 0. 

- END OF CHAPTER 

13

https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.56&r2=1.57
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.45&r2=1.46
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.40&r2=1.41
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.39&r2=1.40
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.38&r2=1.39
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.30&r2=1.31
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.22&r2=1.23
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.15&r2=1.16
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&r1=1.10&r2=1.11
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&view=log


Chapter II: Free Software Is Even More Important 
Now 

by Richard Stallman 

Since 1983, the Free Software Movement has campaigned for computer users' freedom—for users to 
control the software they use, rather than vice versa. When a program respects users' freedom and 
community, we call it “free software.” 

We also sometimes call it “libre software” to emphasize that we're talking about liberty, not price. Some 
proprietary (nonfree) programs, such as Photoshop, are very expensive; others, such as the Uber app, 
are available gratis—but that's a minor detail. Either way, they give the program's developer power over 
the users, power that no one should have. 

Those two nonfree programs have something else in common: they are both malware. That is, both 
have functionalities designed to mistreat the user. Proprietary software nowadays is often malware 
because the developers' power corrupts them . That directory lists around 650 different malicious 18

functionalities (as of March 2025), but it is surely just the tip of the iceberg. 

With free software, the users control the program, both individually and collectively. So they control 
what their computers do (assuming those computers are loyal  and do what the users' programs tell 19

them to do). 

With proprietary software, the program controls the users, and some other entity (the developer or 
“owner”) controls the program. So the proprietary program gives its developer power over its users. 
That is unjust in itself; moreover, it tempts the developer to mistreat the users in other ways. 

Even when proprietary software isn't downright malicious, its developers have an incentive to make it 
addictive, controlling and manipulative . You can say, as does the author of that article, that the 20

developers have an ethical obligation not to do that, but generally they follow their interests. If you 
want this not to happen, make sure the program is controlled by its users. 

Freedom means having control over your own life. If you use a program to carry out activities in your 
life, your freedom depends on your having control over the program. You deserve to have control over 
the programs you use, and all the more so when you use them for something important in your life. 

Users' control over the program requires four essential freedoms . 21

(0) The freedom to run the program as you wish, for whatever purpose. 

14

https://www.gnu.org/malware
https://www.gnu.org/philosophy/loyal-computers.html
https://observer.com/2016/06/how-technology-hijacks-peoples-minds%E2%80%8A-%E2%80%8Afrom-a-magician-and-googles-design-ethicist/
https://www.gnu.org/philosophy/free-sw.html


(1) The freedom to study the program's “source code,” and change it, so the program does your 
computing as you wish. Programs are written by programmers in a programming language—like 
English combined with algebra—and that form of the program is the “source code.” Anyone who 
knows programming, and has the program in source code form, can read the source code, understand 
its functioning, and change it too. When all you get is the executable form, a series of numbers that are 
efficient for the computer to run but extremely hard for a human being to understand, understanding 
and changing the program in that form are forbiddingly hard. 

(2) The freedom to make and distribute exact copies when you wish. (It is not an obligation; doing this 
is your choice. If the program is free, that doesn't mean someone has an obligation to offer you a copy, 
or that you have an obligation to offer him a copy. Distributing a program to users without freedom 
mistreats them; however, choosing not to distribute the program—using it privately—does not 
mistreat anyone.) 

(3) The freedom to make and distribute copies of your modified versions, when you wish. 

The first two freedoms mean each user can exercise individual control over the program. With the 
other two freedoms, any group of users can together exercise collective control over the program. With 
all four freedoms, the users fully control the program. If any of them is missing or inadequate, the 
program is proprietary (nonfree), and unjust. 

Other kinds of works are also used for practical activities, including recipes for cooking, educational 
works such as textbooks, reference works such as dictionaries and encyclopedias, fonts for displaying 
paragraphs of text, circuit diagrams for hardware for people to build, and patterns for making useful 
(not merely decorative) objects with a 3D printer. Since these are not software, the free software 
movement strictly speaking doesn't cover them; but the same reasoning applies and leads to the same 
conclusion: these works should carry the four freedoms. 

A free program allows you to tinker with it to make it do what you want (or cease to do something you 
dislike). Tinkering with software may sound ridiculous if you are accustomed to proprietary software 
as a sealed box, but in the Free World it's a common thing to do, and a good way to learn 
programming. Even the traditional American pastime of tinkering with cars is obstructed because cars 
now contain nonfree software. 

The Injustice of Proprietariness 

If the users don't control the program, the program controls the users. With proprietary software, 
there is always some entity, the developer or “owner” of the program, that controls the program—and 
through it, exercises power over its users. A nonfree program is a yoke, an instrument of unjust power. 

15



In outrageous cases (though this outrage has become quite usual) proprietary programs are designed to 
spy on the users, restrict them, censor them, and abuse them. For instance, the operating system of 
Apple iThings  does all of these, and so does Windows on mobile devices with ARM chips. Windows, 22

mobile phone firmware, and Google Chrome for Windows include a universal back door that allows 
some company to change the program remotely without asking permission. The Amazon Kindle has a 
back door that can erase books. 

The use of nonfree software in the “internet of things” would turn it into the “internet of 
telemarketers”  as well as the “internet of snoopers.” 23

With the goal of ending the injustice of nonfree software, the free software movement develops free 
programs so users can free themselves. We began in 1984 by developing the free operating system 
GNU . Today, millions of computers run GNU, mainly in the GNU/Linux combination . 24 25

Distributing a program to users without freedom mistreats those users; however, choosing not to 
distribute the program does not mistreat anyone. If you write a program and use it privately, that does 
no wrong to others. (You do miss an opportunity to do good, but that's not the same as doing wrong.) 
Thus, when we say all software must be free, we mean that every copy must come with the four 
freedoms, but we don't mean that someone has an obligation to offer you a copy. 

Nonfree Software and SaaSS 

Nonfree software was the first way for companies to take control of people's computing. Nowadays, 
there is another way, called Service as a Software Substitute, or SaaSS. That means letting someone 
else's server do your own computing tasks. 

SaaSS doesn't mean the programs on the server are nonfree (though they often are). Rather, using 
SaaSS causes the same injustices as using a nonfree program: they are two paths to the same bad place. 
Take the example of a SaaSS translation service: The user sends text to the server, and the server 
translates it (from English to Spanish, say) and sends the translation back to the user. Now the job of 
translating is under the control of the server operator rather than the user. 

If you use SaaSS, the server operator controls your computing. It requires entrusting all the pertinent 
data to the server operator, which will be forced to show it to the state as well—who does that server 
really serve, after all?  26

Primary And Secondary Injustices 

When you use proprietary programs or SaaSS, first of all you do wrong to yourself, because it gives 
some entity unjust power over you. For your own sake, you should escape. It also wrongs others if you 

16

https://www.gnu.org/malware
https://www.gnu.org/malware
https://www.gnu.org/philosophy/why-call-it-the-swindle.html
https://archive.ieet.org/articles/rinesi20150806.html
https://archive.ieet.org/articles/rinesi20150806.html
https://www.gnu.org/gnu/thegnuproject.html
https://www.gnu.org/gnu/gnu-linux-faq.html
https://www.gnu.org/philosophy/who-does-that-server-really-serve.html
https://www.gnu.org/philosophy/who-does-that-server-really-serve.html


make a promise not to share. It is evil to keep such a promise, and a lesser evil to break it; to be truly 
upright, you should not make the promise at all. 

There are cases where using nonfree software puts pressure directly on others to do likewise. Skype is a 
clear example: when one person uses the nonfree Skype client software, it requires another person to 
use that software too—thus both surrender their freedom. (Google Hangouts have the same problem.) 
It is wrong even to suggest using such programs. We should refuse to use them even briefly, even on 
someone else's computer. 

Another harm of using nonfree programs and SaaSS is that it rewards the perpetrator, encouraging 
further development of that program or “service,” leading in turn to even more people falling under 
the company's thumb. 

All the forms of indirect harm are magnified when the user is a public entity or a school. 

Free Software and the State 

Public agencies exist for the people, not for themselves. When they do computing, they do it for the 
people. They have a duty to maintain full control over that computing so that they can assure it is done 
properly for the people. (This constitutes the computational sovereignty of the state.) They must never 
allow control over the state's computing to fall into private hands. 

To maintain control of the people's computing, public agencies must not do it with proprietary 
software (software under the control of an entity other than the state). And they must not entrust it to 
a service programmed and run by an entity other than the state, since this would be SaaSS. 

Proprietary software has no security at all in one crucial case—against its developer. And the developer 
may help others attack. Microsoft shows Windows bugs to the NSA  (the US government digital 27

spying agency) before fixing them. We do not know whether Apple does likewise, but it is under the 
same government pressure as Microsoft. If the government of any other country uses such software, it 
endangers national security. Do you want the NSA to break into your government's computers? See 
our suggested policies for governments to promote free software . 28

Free Software and Education 

Schools (and this includes all educational activities) influence the future of society through what they 
teach. They should teach exclusively free software, so as to use their influence for the good. To teach a 
proprietary program is to implant dependence, which goes against the mission of education. By 
training in use of free software, schools will direct society's future towards freedom, and help talented 
programmers master the craft. 

17

https://arstechnica.com/information-technology/2013/06/nsa-gets-early-access-to-zero-day-data-from-microsoft-others/
https://www.gnu.org/philosophy/government-free-software.html


They will also teach students the habit of cooperating, helping other people. Each class should have 
this rule: “Students, this class is a place where we share our knowledge. If you bring software to class, 
you may not keep it for yourself. Rather, you must share copies with the rest of the class—including 
the program's source code, in case someone else wants to learn. Therefore, bringing proprietary 
software to class is not permitted except to reverse engineer it.” 

Proprietary developers would have us punish students who are good enough at heart to share software 
and thwart those curious enough to want to change it. This means a bad education. See more 
discussion about the use of free software in schools . 29

Free Software: More Than “Advantages” 

I'm often asked to describe the “advantages” of free software. But the word “advantages” is too weak 
when it comes to freedom. Life without freedom is oppression, and that applies to computing as well 
as every other activity in our lives. We must refuse to give the developers of the programs or computing 
services control over the computing we do. This is the right thing to do, for selfish reasons; but not 
solely for selfish reasons. 

Freedom includes the freedom to cooperate with others. Denying people that freedom means keeping 
them divided, which is the start of a scheme to oppress them. In the free software community, we are 
very much aware of the importance of the freedom to cooperate because our work consists of 
organized cooperation. If your friend comes to visit and sees you use a program, she might ask for a 
copy. A program which stops you from redistributing it, or says you're “not supposed to,” is antisocial. 

In computing, cooperation includes redistributing exact copies of a program to other users. It also 
includes distributing your changed versions to them. Free software encourages these forms of 
cooperation, while proprietary software forbids them. It forbids redistribution of copies, and by 
denying users the source code, it blocks them from making changes. SaaSS has the same effects: if your 
computing is done over the web in someone else's server, by someone else's copy of a program, you 
can't see it or touch the software that does your computing, so you can't redistribute it or change it. 

Conclusion 

We deserve to have control of our own computing. How can we win this control? 

• By rejecting nonfree software on the computers we own or regularly use, and rejecting SaaSS. 
• By developing free software  (for those of us who are programmers.) 30

• By refusing to develop or promote nonfree software or SaaSS. 
• By spreading these ideas to others . 31

• By saying no and stating our reasons  when we are invited to run a nonfree program. 32

18

https://www.gnu.org/education/education.html
https://www.gnu.org/licenses/license-recommendations.html
https://www.gnu.org/help/help.html
https://www.gnu.org/philosophy/saying-no-even-once.html


We and thousands of users have done this since 1984, which is how we now have the free GNU/Linux 
operating system that anyone—programmer or not—can use. Join our cause, as a programmer or an 
activist. Let's make all computer users free. 

- END OF CHAPTER 

19



Chapter III: Selling Free Software 

Many people believe that the spirit of the GNU Project is that you should not charge money for 
distributing copies of software, or that you should charge as little as possible—just enough to cover the 
cost. This is a misunderstanding. 

Actually, we encourage people who redistribute free software  to charge as much as they wish or can. 33

If a license does not permit users to make copies and sell them, it is a nonfree license. If this seems 
surprising to you, please read on. 

The word “free” has two legitimate general meanings; it can refer either to freedom or to price. When 
we speak of “free software,” we're talking about freedom, not price. (Think of “free speech,” not “free 
beer.”) Specifically, it means that a user is free to run the program, study and change the program, and 
redistribute the program with or without changes. 

Free programs are sometimes distributed gratis, and sometimes for a substantial price. Often the same 
program is available in both ways from different places. The program is free regardless of the price, 
because users have freedom in using it. 

Nonfree programs  are usually sold for a high price, but sometimes a store will give you a copy at no 34

charge. That doesn't make it free software, though. Price or no price, the program is nonfree because 
its users are denied freedom. 

Since free software is not a matter of price, a low price doesn't make the software free, or even closer to 
free. So if you are redistributing copies of free software, you might as well charge a substantial fee and 
make some money. Redistributing free software is a good and legitimate activity; if you do it, you might 
as well make a profit from it. 

Free software is a community project, and everyone who depends on it ought to look for ways to 
contribute to building the community. For a distributor, the way to do this is to give a part of the profit 
to free software development projects or to the Free Software Foundation . This way you can advance 35

the world of free software. 

Distributing free software is an opportunity to raise funds for 
development. Don't waste it! 

In order to contribute funds, you need to have some extra. If you charge too low a fee, you won't have 
anything to spare to support development. 

20

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/categories.html#ProprietarySoftware
https://www.fsf.org/


Will a higher distribution price hurt some users? 

People sometimes worry that a high distribution fee will put free software out of range for users who 
don't have a lot of money. With proprietary software, a high price does exactly that—but free software 
is different. 

The difference is that free software naturally tends to spread around, and there are many ways to get it. 

Software hoarders try their damnedest to stop you from running a proprietary program without 
paying the standard price. If this price is high, that does make it hard for some users to use the 
program. 

With free software, users don't have to pay the distribution fee in order to use the software. They can 
copy the program from a friend who has a copy, or with the help of a friend who has network access. 
Or several users can join together, split the price of one CD-ROM, then each in turn can install the 
software. A high CD-ROM price is not a major obstacle when the software is free. 

Will a higher distribution price discourage use of free software? 

Another common concern is for the popularity of free software. People think that a high price for 
distribution would reduce the number of users, or that a low price is likely to encourage users. 

This is true for proprietary software—but free software is different. With so many ways to get copies, 
the price of distribution service has less effect on popularity. 

In the long run, how many people use free software is determined mainly by how much free software 
can do, and how easy it is to use. Many users do not make freedom their priority; they may continue to 
use proprietary software if free software can't do all the jobs they want done. Thus, if we want to 
increase the number of users in the long run, we should above all develop more free software. 

The most direct way to do this is by writing needed free software  or manuals  yourself. But if you do 36 37

distribution rather than writing, the best way you can help is by raising funds for others to write them. 

The term “selling software” can be confusing too 

Strictly speaking, “selling” means trading goods for money. Selling a copy of a free program is 
legitimate, and we encourage it. 

However, when people think of “selling software ,” they usually imagine doing it the way most 38

companies do it: making the software proprietary rather than free. 

21

https://www.gnu.org/philosophy/categories.html#ProprietarySoftware
https://savannah.gnu.org/projects/tasklist
https://www.gnu.org/doc/doc.html
https://www.gnu.org/philosophy/words-to-avoid.html#SellSoftware


So unless you're going to draw distinctions carefully, the way this article does, we suggest it is better to 
avoid using the term “selling software” and choose some other wording instead. For example, you 
could say “distributing free software for a fee”—that is unambiguous. 

High or low fees, and the GNU GPL 

Except for one special situation, the GNU General Public License  (GNU GPL) has no requirements 39

about how much you can charge for distributing a copy of free software. You can charge nothing, a 
penny, a dollar, or a billion dollars. It's up to you, and the marketplace, so don't complain to us if 
nobody wants to pay a billion dollars for a copy. 

The one exception is in the case where binaries are distributed without the corresponding complete 
source code. Those who do this are required by the GNU GPL to provide source code on subsequent 
request. Without a limit on the fee for the source code, they would be able set a fee too large for anyone 
to pay—such as a billion dollars—and thus pretend to release source code while in truth concealing it. 
So in this case we have to limit the fee  for source in order to ensure the user's freedom. In ordinary 40

situations, however, there is no such justification for limiting distribution fees, so we do not limit 
them. 

Sometimes companies whose activities cross the line stated in the GNU GPL plead for permission, 
saying that they “won't charge money for the GNU software” or such like. That won't get them 
anywhere with us. Free software is about freedom, and enforcing the GPL is defending freedom. When 
we defend users' freedom, we are not distracted by side issues such as how much of a distribution fee is 
charged. Freedom is the issue, the whole issue, and the only issue. 

- END OF CHAPTER 

22

https://www.gnu.org/licenses/gpl.html
https://www.gnu.org/licenses/gpl.html#section6


Chapter IV: Why programs must not limit the 
freedom to run them 

by Richard Stallman 

Free software means software controlled by its users, rather than the reverse. Specifically, it means the 
software comes with four essential freedoms that software users deserve. At the head of the list is 
freedom 0, the freedom to run the program as you wish, in order to do what you wish. 

Some developers propose to place usage restrictions in software licenses to ban using the program for 
certain purposes, but that would be a disastrous path. This article explains why freedom 0 must not be 
limited. Conditions to limit the use of a program would achieve little of their aims, but could wreck 
the free software community. 

First of all, let's be clear what freedom 0 means. It means that the distribution of the software does not 
restrict how you use it. This doesn't make you exempt from laws. For instance, fraud is a crime in the 
US—a law which I think is right and proper. Whatever the free software license says, using a free 
program to carry out your fraud won't shield you from prosecution. 

A license condition against fraud would be superfluous in a country where fraud is a crime. But why 
not a condition against using it for torture, a practice that states frequently condone when carried out 
by the “security forces”? 

A condition against torture would not work, because enforcement of any free software license is done 
through the state. A state that wants to carry out torture will ignore the license. When victims of US 
torture try suing the US government, courts dismiss the cases on the grounds that their treatment is a 
national security secret. If a software developer tried to sue the US government for using a program for 
torture against the conditions of its license, that suit would be dismissed too. In general, states are 
clever at making legal excuses for whatever terrible things they want to do. Businesses with powerful 
lobbies can do it too. 

What if the condition were against some specialized private activity? For instance, PETA proposed a 
license that would forbid use of the software to cause pain to animals with a spinal column. Or there 
might be a condition against using a certain program to make or publish drawings of Mohammad. Or 
against its use in experiments with embryonic stem cells. Or against using it to make unauthorized 
copies of musical recordings. 

23

https://www.gnu.org/philosophy/free-sw.html


It is not clear these would be enforcible. Free software licenses are based on copyright law, and trying to 
impose usage conditions that way is stretching what copyright law permits, stretching it in a dangerous 
way. Would you like books to carry license conditions about how you can use the information in them? 

What if such conditions are legally enforcible—would that be good? 

The fact is, people have very different ethical ideas about the activities that might be done using 
software. I happen to think those four unusual activities are legitimate and should not be forbidden. In 
particular I support the use of software for medical experiments on animals, and for processing meat. I 
defend the human rights of animal right activists but I don't agree with them; I would not want PETA 
to get its way in restricting the use of software. 

Since I am not a pacifist, I would also disagree with a “no military use” provision. I condemn wars of 
aggression but I don't condemn fighting back. In fact, I have supported efforts to convince various 
armies to switch to free software, since they can check it for back doors and surveillance features that 
could imperil national security. 

Since I am not against business in general, I would oppose a restriction against commercial use. A 
system that we could use only for recreation, hobbies and school is off limits to much of what we do 
with computers. 

I've stated above some parts of my views about certain political issues unrelated to the issue of free 
software—about which of those activities are or aren't unjust. Your views about them might differ, and 
that's precisely the point. If we accepted programs with usage restrictions as part of a free operating 
system such as GNU, people would come up with lots of different usage restrictions. There would be 
programs banned for use in meat processing, programs banned only for pigs, programs banned only for 
cows, and programs limited to kosher foods. Someone who hates spinach might license a program to 
allow use for processing any vegetable except spinach, while a Popeye fan's program might allow only 
use for spinach. There would be music programs allowed only for rap music, and others allowed only 
for classical music. 

The result would be a system that you could not count on for any purpose. For each task you wish to 
do, you'd have to check lots of licenses to see which parts of your system are off limits for that task. Not 
only for the components you explicitly use, but also for the hundreds of components that they link 
with, invoke, or communicate with. 

How would users respond to that? I think most of them would use proprietary systems. Allowing 
usage restrictions in free software would mainly push users towards nonfree software. Trying to stop 
users from doing something through usage restrictions in free software is as ineffective as pushing on 
an object through a long, straight, soft piece of cooked spaghetti. As one wag put it, this is “someone 

24



with a very small hammer seeing every problem as a nail, and not even acknowledging that the nail is far 
too big for the hammer.” 

It is worse than ineffective; it is wrong too, because software developers should not exercise such power 
over what users do. Imagine selling pens with conditions about what you can write with them; that 
would be noisome, and we should not stand for it. Likewise for general software. If you make 
something that is generally useful, like a pen, people will use it to write all sorts of things, even horrible 
things such as orders to torture a dissident; but you must not have the power to control people's 
activities through their pens. It is the same for a text editor, compiler or kernel. 

You do have an opportunity to determine what your software can be used for: when you decide what 
functionality to implement. You can write programs that lend themselves mainly to uses you think are 
positive, and you have no obligation to write any features that might lend themselves particularly to 
activities you disapprove of. 

The conclusion is clear: a program must not restrict what jobs its users do with it. Freedom 0 must be 
complete. We need to stop torture, but we can't do it through software licenses. The proper job of 
software licenses is to establish and protect users' freedom. 

- END OF CHAPTER 

25



Chapter V: Your Freedom Needs Free Software 

by Richard Stallman 

Many of us know that governments can threaten the human rights of software users through censorship 
and surveillance of the Internet. Many do not realize that the software they run on their home or work 
computers can be an even worse threat. Thinking of software as “just a tool,” they suppose that it obeys 
them, when in fact it often obeys others instead. 

The software running in most computers is nonfree, proprietary software: controlled by software 
companies, not by its users. Users can't check what these programs do, nor prevent them from doing 
what they don't want. Most people accept this because they have seen no other way, but it is simply 
wrong to give developers power over the users' computer. 

This unjust power, as usual, tempts its wielders to further misdeeds. If a computer talks to a network, 
and you don't control the software in it, it can easily spy on you. Microsoft Windows spies on users; for 
instance, it reports what words a user searches for in her own files, and what other programs are 
installed. RealPlayer spies too; it reports what the user plays. Cell phones are full of nonfree software, 
which spies. Cell phones send out localizing signals even when “off,” many can send out your precise 
GPS location whether you wish or not, and some models can be switched on remotely as listening 
devices. Users can't fix these malicious features because they don't have control. 

Some proprietary software is designed to restrict and attack its users. Windows Vista  was a big 41

advance in this field; the reason it required replacement of old hardware is that the new models were 
designed to support unbreakable restrictions. Microsoft thus required users to pay for shiny new 
shackles. Vista was also designed to permit forced updating by corporate authority. Hence the Bad 
Vista campaign, which urged Windows users not to “upgrade” to Vista. For later Windows versions, 
which are even more malicious , we now have Upgrade from Windows . Mac OS also contains 42 43

features designed to restrict its users . 44

In 1999, Microsoft installed back doors for the US government's use. Researchers disagree on what 
those back doors can do , but Microsoft has made that question less important by its forced software 45

installation, which is even worse. If the 1999 code won't let NSA spy on you, Microsoft can force 
another change which will do so. Other proprietary programs may or may not have back doors, but 
since we cannot check them, we cannot trust them. 

The only way to assure that your software is working for you is to insist on free/libre software. This 
means users get the source code, are free to study and change it, and are free to redistribute it with or 
without changes. The GNU/Linux system , developed specifically for users' freedom , includes office 46 47

26

https://www.gnu.org/philosophy/categories.html#ProprietarySoftware
https://www.gnu.org/proprietary/proprietary.html
https://badvista.fsf.org/
https://badvista.fsf.org/
https://badvista.fsf.org/
https://www.gnu.org/proprietary/malware-microsoft.html
https://www.fsf.org/windows
https://www.gnu.org/proprietary/malware-apple.html
https://www.techworm.net/2013/06/nsa-built-back-door-in-microsofts-all.html
https://www.techworm.net/2013/06/nsa-built-back-door-in-microsofts-all.html
https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/gnu/gnu.html


applications, multimedia, games, and everything you really need to run a computer. See our list of 
totally free/libre versions of GNU/Linux . 48

A special problem occurs when activists for social change use proprietary software, because its 
developers, who control it, may be companies they wish to protest—or that work hand in glove with 
the states whose policies they oppose. Control of our software by a proprietary software company, 
whether it be Microsoft, Apple, Adobe or Skype, means control of what we can say, and to whom. 
This threatens our freedom in all areas of life. 

There is also danger in using a company's server to do your word processing or email—and not just if 
you are in China, as US lawyer Michael Springmann discovered. In 2003, AOL not only handed over 
to the police his confidential discussions with clients, it also made his email and his address list 
disappear, and didn't admit this was intentional until one of its staff made a slip. Springmann gave up 
on getting his data back. 

The US is not the only state that doesn't respect human rights, so keep your data on your own 
computer, and your backups under your own custody—and run your computer with free/libre 
software. 

- END OF CHAPTER 

27

https://www.gnu.org/distros/distros.html


Chapter VI: Why Software Should Not Have 
Owners 

by Richard Stallman 

Digital information technology contributes to the world by making it easier to copy and modify 
information. Computers promise to make this easier for all of us. 

Not everyone wants it to be easier. The system of copyright gives software programs “owners,” most of 
whom aim to withhold software's potential benefit from the rest of the public. They would like to be 
the only ones who can copy and modify the software that we use. 

The copyright system grew up with printing—a technology for mass-production copying. Copyright 
fit in well with this technology because it restricted only the mass producers of copies. It did not take 
freedom away from readers of books. An ordinary reader, who did not own a printing press, could 
copy books only with pen and ink, and few readers were sued for that. 

Digital technology is more flexible than the printing press: when information has digital form, you can 
easily copy it to share it with others. This very flexibility makes a bad fit with a system like copyright. 
That's the reason for the increasingly nasty and draconian measures now used to enforce software 
copyright. Consider these four practices of the Software Publishers Association (SPA): 

• Massive propaganda saying it is wrong to disobey the owners to help your friend. 
• Solicitation for stool pigeons to inform on their coworkers and colleagues. 
• Raids (with police help) on offices and schools, in which people are told they must prove they are 

innocent of illegal copying. 
• Prosecution (by the US government, at the SPA's request) of people such as MIT's David 

LaMacchia, not for copying software (he is not accused of copying any), but merely for leaving 
copying facilities unguarded and failing to censor their use.[1] 

All four practices resemble those used in the former Soviet Union, where every copying machine had a 
guard to prevent forbidden copying, and where individuals had to copy information secretly and pass it 
from hand to hand as samizdat. There is of course a difference: the motive for information control in 
the Soviet Union was political; in the US the motive is profit. But it is the actions that affect us, not the 
motive. Any attempt to block the sharing of information, no matter why, leads to the same methods 
and the same harshness. 

Owners make several kinds of arguments for giving them the power to control how we use 
information: 

28



• Name calling. Owners use smear words such as “piracy” and “theft,” as well as expert 
terminology such as “intellectual property” and “damage,” to suggest a certain line of thinking to 
the public—a simplistic analogy between programs and physical objects. 
Our ideas and intuitions about property for material objects are about whether it is right to take 
an object away from someone else. They don't directly apply to making a copy of something. But 
the owners ask us to apply them anyway. 

• Exaggeration. Owners say that they suffer “harm” or “economic loss” when users copy programs 
themselves. But the copying has no direct effect on the owner, and it harms no one. The owner 
can lose only if the person who made the copy would otherwise have paid for one from the 
owner. 
A little thought shows that most such people would not have bought copies. Yet the owners 
compute their “losses” as if each and every one would have bought a copy. That is exaggeration—
to put it kindly. 

• The law. Owners often describe the current state of the law, and the harsh penalties they can 
threaten us with. Implicit in this approach is the suggestion that today's law reflects an 
unquestionable view of morality—yet at the same time, we are urged to regard these penalties as 
facts of nature that can't be blamed on anyone. 
This line of persuasion isn't designed to stand up to critical thinking; it's intended to reinforce a 
habitual mental pathway. 
It's elementary that laws don't decide right and wrong. Every American should know that, in the 
1950s, it was against the law in many states for a black person to sit in the front of a bus; but only 
racists would say sitting there was wrong. 

• Natural rights. Authors often claim a special connection with programs they have written, and 
go on to assert that, as a result, their desires and interests concerning the program simply 
outweigh those of anyone else—or even those of the whole rest of the world. (Typically 
companies, not authors, hold the copyrights on software, but we are expected to ignore this 
discrepancy.) 
To those who propose this as an ethical axiom—the author is more important than you—I can 
only say that I, a notable software author myself, call it bunk. 
But people in general are only likely to feel any sympathy with the natural rights claims for two 
reasons. 
One reason is an overstretched analogy with material objects. When I cook spaghetti, I do object 
if someone else eats it, because then I cannot eat it. His action hurts me exactly as much as it 
benefits him; only one of us can eat the spaghetti, so the question is, which one? The smallest 
distinction between us is enough to tip the ethical balance. 
But whether you run or change a program I wrote affects you directly and me only indirectly. 
Whether you give a copy to your friend affects you and your friend much more than it affects 
me. I shouldn't have the power to tell you not to do these things. No one should. 
The second reason is that people have been told that natural rights for authors is the accepted 
and unquestioned tradition of our society. 

29



As a matter of history, the opposite is true. The idea of natural rights of authors was proposed 
and decisively rejected when the US Constitution was drawn up. That's why the Constitution 
only permits a system of copyright and does not require one; that's why it says that copyright 
must be temporary. It also states that the purpose of copyright is to promote progress—not to 
reward authors. Copyright does reward authors somewhat, and publishers more, but that is 
intended as a means of modifying their behavior. 
The real established tradition of our society is that copyright cuts into the natural rights of the 
public—and that this can only be justified for the public's sake. 

• Economics. The final argument made for having owners of software is that this leads to 
production of more software. 
Unlike the others, this argument at least takes a legitimate approach to the subject. It is based on 
a valid goal—satisfying the users of software. And it is empirically clear that people will produce 
more of something if they are well paid for doing so. 
But the economic argument has a flaw: it is based on the assumption that the difference is only a 
matter of how much money we have to pay. It assumes that production of software is what we 
want, whether the software has owners or not. 
People readily accept this assumption because it accords with our experiences with material 
objects. Consider a sandwich, for instance. You might well be able to get an equivalent sandwich 
either gratis or for a price. If so, the amount you pay is the only difference. Whether or not you 
have to buy it, the sandwich has the same taste, the same nutritional value, and in either case you 
can only eat it once. Whether you get the sandwich from an owner or not cannot directly affect 
anything but the amount of money you have afterwards. 
This is true for any kind of material object—whether or not it has an owner does not directly 
affect what it is, or what you can do with it if you acquire it. 
But if a program has an owner, this very much affects what it is, and what you can do with a copy 
if you buy one. The difference is not just a matter of money. The system of owners of software 
encourages software owners to produce something—but not what society really needs. And it 
causes intangible ethical pollution that affects us all. 

What does society need? It needs information that is truly available to its citizens—for example, 
programs that people can read, fix, adapt, and improve, not just operate. But what software owners 
typically deliver is a black box that we can't study or change. 

Society also needs freedom. When a program has an owner, the users lose freedom to control part of 
their own lives. 

And, above all, society needs to encourage the spirit of voluntary cooperation in its citizens. When 
software owners tell us that helping our neighbors in a natural way is “piracy,” they pollute our 
society's civic spirit. 

This is why we say that free software is a matter of freedom, not price. 

30

https://www.gnu.org/philosophy/free-sw.html


The economic argument for owners is erroneous, but the economic issue is real. Some people write 
useful software for the pleasure of writing it or for admiration and love; but if we want more software 
than those people write, we need to raise funds. 

Since the 1980s, free software developers have tried various methods of finding funds, with some 
success. There's no need to make anyone rich; a typical income is plenty of incentive to do many jobs 
that are less satisfying than programming. 

For years, until a fellowship made it unnecessary, I made a living from custom enhancements of the free 
software I had written. Each enhancement was added to the standard released version and thus 
eventually became available to the general public. Clients paid me so that I would work on the 
enhancements they wanted, rather than on the features I would otherwise have considered highest 
priority. 

Some free software developers make money by selling support services. In 1994, Cygnus Support, with 
around 50 employees, estimated that about 15 percent of its staff activity was free software 
development—a respectable percentage for a software company. 

In the early 1990s, companies including Intel, Motorola, Texas Instruments and Analog Devices 
combined to fund the continued development of the GNU C compiler. Most GCC development is 
still done by paid developers. The GNU compiler for the Ada language was funded in the 90s by the 
US Air Force, and continued since then by a company formed specifically for the purpose. 

The free software movement is still small, but the example of listener-supported radio in the US shows 
it's possible to support a large activity without forcing each user to pay. 

As a computer user today, you may find yourself using a proprietary program. If your friend asks to 
make a copy, it would be wrong to refuse. Cooperation is more important than copyright. But 
underground, closet cooperation does not make for a good society. A person should aspire to live an 
upright life openly with pride, and this means saying no to proprietary software. 

You deserve to be able to cooperate openly and freely with other people who use software. You deserve 
to be able to learn how the software works, and to teach your students with it. You deserve to be able to 
hire your favorite programmer to fix it when it breaks. 

You deserve free software. 

Footnote 

1. The charges were subsequently dismissed. 

31

https://www.gnu.org/philosophy/categories.html#ProprietarySoftware


Chapter VII: Tivoization 

There is a paradoxical class of firmware, for which the source code is free software, because it carries a 
free software license , but specific hardware, for which these programs are designed, renders any 49

binaries produced from that source code nonfree in practice. That is because that hardware requires 
the binary to be signed by the hardware manufacturer, either in order to run at all, or in order to make 
use of crucial hardware facilities, effectively forbidding users to run modified versions. We call these 
programs tivoized blobs. 

While it is still physically possible to replace the released binary on the hardware that enforces 
signatures, it is useless to do so, since the hardware would refuse to run the modified version, or to do 
some special job such as decoding the DRM. Therefore, the freedom #1 (one of the four essential 
freedoms) is missing, and that binary is not free, even though the source code may carry a free software 
license. Indirectly, tivoization affects the other freedoms (to use and to distribute modified versions), 
because any modification of the firmware by yourself will result in broken hardware. The binary may 
qualify as open source , because the term “open source” is defined in terms of how the source is 50

treated. 

The publisher or the manufacturer may advertize this forced signature check as a “feature.” Here is 
their argument: your computer won't boot (or will lack important features) if the hardware detects 
corrupted firmware, so tivoization protects you and your data. But we should wonder: whom does it 
protect, and from whom? Who is the owner of this lock? Who decides what is good or bad software 
for our own computing? If it is not us, then this computer is not loyal. 

The tivoization is a not a security feature, it is a trap for our freedoms. It prevents users from upgrading 
their own hardware or firmware, and it suggests a false sense of security by giving the control of their 
computer only to some “trusted” firmware provider, compelling users to take the provider's word for 
their safety. 

The firmware that drives the hardware at the lowest level also has the most control over it. It often 
contains back doors  and vulnerabilities  which only the “trusted” provider (trusted by the hardware) 51 52

is allowed to fix. 

Preventing unsigned or self-signed versions of the firmware to be run is a way for the manufacturer and 
publisher to keep the control over your computing, even more than if the source code itself were 
proprietary! It only serves the purpose of the publisher or manufacturer, and has no benefit to the 
software user or the hardware owner. On the other hand, supposing some models of hardware will run 
modified versions, there is no advantage for you in using the manufacturer's signed version instead of a 
self-signed variant. 

32

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/licenses/license-list.html
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-open-overlap.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/loyal-computers.html
https://libreboot.org/faq.html#intelme
https://www.gnu.org/proprietary/proprietary-insecurity.html#uefi-rootkit


Among the most important additions in the GNU General Public License version 3, in 2007, was to 
prohibit taking a GPLv3-covered program and distributing it under tivoization , because it denies 53

users the freedom, in practice, to modify the program and then use the modified version. 

As stated by the GNU Free System Distribution Guidelines , operating systems which provide such 54

firmware are not free, whether the upstream source code is free or not. 

- END OF CHAPTER 

33

https://www.gnu.org/licenses/quick-guide-gplv3.html
https://www.gnu.org/distros/free-system-distribution-guidelines.html


Chapter VIII: When Free Software Isn't 
(Practically) Superior 

by Benjamin Mako Hill 

The Open Source Initiative's mission statement reads, “Open source is a development method for 
software that harnesses the power of distributed peer review and transparency of process. The promise 
of open source is better quality, higher reliability, more flexibility, lower cost, and an end to predatory 
vendor lock-in.” 

For more than a decade now, the Free Software Foundation has argued against this “open source” 
characterization of the free software movement. Free software advocates have primarily argued against 
this framing because “open source” is an explicit effort to deemphasize our core message of freedom 
and obscure our movement's role in the success of the software we have built. We have argued that 
“open source” is bad, fundamentally, because it attempts to keep people from talking about software 
freedom. But there is another reason we should be wary of the open source framing. The fundamental 
open source argument, as quoted in the mission statement above, is often incorrect. 

Although the Open Source Initiative suggests “the promise of open source is better quality, higher 
reliability, more flexibility,” this promise is not always realized. Although we do not often advertise the 
fact, any user of an early-stage free software project can explain that free software is not always as 
convenient, in purely practical terms, as its proprietary competitors. Free software is sometimes low 
quality. It is sometimes unreliable. It is sometimes inflexible. If people take the arguments in favor of 
open source seriously, they must explain why open source has not lived up to its “promise” and 
conclude that proprietary tools would be a better choice. There is no reason we should have to do 
either. 

Richard Stallman speaks to this in his article on Why Open Source Misses the Point when he explains, 
“The idea of open source is that allowing users to change and redistribute the software will make it 
more powerful and reliable. But this is not guaranteed. Developers of proprietary software are not 
necessarily incompetent. Sometimes they produce a program that is powerful and reliable, even though 
it does not respect the users' freedom.” 

For open source, poor-quality software is a problem to be explained away or a reason to eschew the 
software altogether. For free software, it is a problem to be worked through. For free software 
advocates, glitches and missing features are never a source of shame. Any piece of free software that 
respects users' freedom has a strong inherent advantage over a proprietary competitor that does not. 
Even if it has other issues, free software always has freedom. 

34

https://www.gnu.org/philosophy/open-source-misses-the-point.html


Of course, every piece of free software must start somewhere. A brand-new piece of software, for 
example, is unlikely to be more featureful than an established proprietary tool. Projects begin with 
many bugs and improve over time. While open source advocates might argue that a project will grow 
into usefulness over time and with luck, free software projects represent important contributions on 
day one to a free software advocate. Every piece of software that gives users control over their 
technology is a step forward. Improved quality as a project matures is the icing on the cake. 

A second, perhaps even more damning, fact is that the collaborative, distributed, peer-review 
development process at the heart of the definition of open source bears little resemblance to the 
practice of software development in the vast majority of projects under free (or “open source”) licenses. 

Several academic studies of free software hosting sites  SourceForge and Savannah  have shown what 55 56

many free software developers who have put a codebase online already know first-hand. The vast 
majority of free software projects are not particularly collaborative. The median number of 
contributors to a free software project on SourceForge? One. A lone developer. SourceForge projects at 
the ninety-fifth percentile by participant size have only five contributors. More than half of these free 
software projects—and even most projects that have made several successful releases and been 
downloaded frequently, are the work of a single developer with little outside help. 

By emphasizing the power of collaborative development and “distributed peer review,” open source 
approaches seem to have very little to say about why one should use, or contribute to, the vast majority 
of free software projects. Because the purported benefits of collaboration cannot be realized when 
there is no collaboration, the vast majority of free development projects are at no technical advantage 
with respect to a proprietary competitor. 

For free software advocates, these same projects are each seen as important successes. Because every 
piece of free software respects its users' freedom, advocates of software freedom argue that each piece of 
free software begins with an inherent ethical advantage over proprietary competitors—even a more 
featureful one. By emphasizing freedom over practical advantages, free software's advocacy is rooted in 
a technical reality in a way that open source is often not. When free software is better, we can celebrate 
this fact. When it is not, we need not treat it as a damning critique of free software advocacy or even as 
a compelling argument against the use of the software in question. 

Open source advocates must defend their thesis that freely developed software should, or will with 
time, be better than proprietary software. Free software supporters can instead ask, “How can we make 
free software better?” In a free software framing, high quality software exists as a means to an end 
rather than an end itself. Free software developers should strive to create functional, flexible software 
that serves its users well. But doing so is not the only way to make steps toward solving what is both an 
easier and a much more profoundly important goal: respecting and protecting their freedom. 

35

https://www.gnu.org/software/repo-criteria.html
https://sv.gnu.org/


Of course, we do not need to reject arguments that collaboration can play an important role in creating 
high-quality software. In many of the most successful free software projects, it clearly has done exactly 
that. The benefits of collaboration become something to understand, support, and work towards, 
rather than something to take for granted in the face of evidence that refuses to conform to ideology. 

- END OF CHAPTER 

36



Chapter IX: Applying the Free Software Criteria 

by Richard Stallman 

The four essential freedoms provide the criteria for whether a particular piece of code is free/libre (i.e., 
respects its users' freedom). How should we apply them to judge whether a software package, an 
operating system, a computer, or a web page is fit to recommend? 

Whether a program is free affects first of all our decisions about our private activities: to maintain our 
freedom, we need to reject the programs that would take it away. However, it also affects what we 
should say to others and do with others. 

A nonfree program is an injustice. To distribute a nonfree program, to recommend a nonfree program 
to other people, or more generally steer them into a course that leads to using nonfree software, means 
leading them to give up their freedom. To be sure, leading people to use nonfree software is not the 
same as installing nonfree software in their computers, but we should not lead people in the wrong 
direction. 

At a deeper level, we must not present a nonfree program as a solution because that would grant it 
legitimacy. Nonfree software is a problem; to present it as a solution denies the existence of the 
problem . 57

This article explains how we apply the basic free software criteria to judging various kinds of things, so 
we can decide whether to recommend them or not. 

Software packages 

For a software package to be free, all the code in it must be free. But not only the code. Since 
documentation files including manuals, README, change log, and so on are essential technical parts 
of a software package, they must be free as well . 58

A software package is typically used alongside many other packages, and interacts with some of them. 
Which kinds of interaction with nonfree programs are ethically acceptable? 

We developed GNU so that there would be a free operating system, because in 1983 none existed. As 
we developed the initial components of GNU, in the 1980s, it was inevitable that each component 
depended on nonfree software. For instance, no C program could run without a nonfree C compiler 
until GCC was working, and none could run without Unix libc until glibc was working. Each 
component could run only on nonfree systems, because all systems were nonfree. 

37

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/compromise.html
https://www.gnu.org/philosophy/compromise.html
https://www.gnu.org/philosophy/free-doc.html


After we released a component that could run on some nonfree systems, users ported it to other 
nonfree systems; those ports were no worse, ethically, than the platform-specific code we needed to 
develop these components, so we incorporated their patches. 

When the kernel, Linux, was freed in 1992, it filled the last gap in the GNU system. (Initially, in 1991, 
Linux had been distributed under a nonfree license.) The combination of GNU and Linux made a 
complete free operating system—GNU/Linux. 

At that point, we could have deleted the support for nonfree platforms, but we decided not to. A 
nonfree system is an injustice, but it's not our fault a user runs one. Supporting a free program on that 
system does not compound the injustice. And it's useful, not only for users of those systems, but also 
for attracting more people to contribute to developing the free program. 

However, a nonfree program that runs on top of a free program is a completely different issue, because 
it leads users to take a step away from freedom. In some cases we disallow this: for instance, GCC 
prohibits nonfree plug-ins . When a program permits nonfree add-ons, it should at least not steer 59

people towards using them. For instance, we choose LibreOffice over OpenOffice because OpenOffice 
suggests use of nonfree add-ons, while LibreOffice shuns them. We developed IceCat  initially to 60

avoid proposing the nonfree add-ons suggested by Firefox. 

In practice, if the IceCat package explains how to run IceCat on MacOS, that will not lead people to 
run MacOS. But if it talked about some nonfree add-on, that would encourage IceCat users to install 
the add-on. Therefore, the IceCat package, including manuals and web site, shouldn't talk about such 
things. 

Sometimes a free program and a nonfree program interoperate but neither is based on the other. Our 
rule for such cases is that if the nonfree program is very well known, we should tell people how to use 
our free program with it; but if the proprietary program is obscure, we should not hint that it exists. 
Sometimes we support interoperation with the nonfree program if that is installed, but avoid telling 
users about the possibility of doing so. 

We reject “enhancements” that would work only on a nonfree system. Those would encourage people 
to use the nonfree system instead of GNU, scoring an own-goal. 

GNU/Linux distros 

After the liberation of Linux in 1992, people began developing GNU/Linux distributions (“distros”). 
Only a few distros are entirely free software . 61

38

https://www.gnu.org/gnu/linux-and-gnu.html
https://gcc.gnu.org/ml/gcc/2014-01/msg00247.html
https://gcc.gnu.org/ml/gcc/2014-01/msg00247.html
https://directory.fsf.org/wiki/IceCat
https://www.gnu.org/distros


The rules for a software package apply to a distro too: an ethical distro must contain only free software 
and steer users only towards free software. But what does it mean for a distro to “contain” a particular 
software package? 

Some distros install programs from binary packages that are part of the distro; others build each 
program from upstream source, and literally contain only the recipes to download and build it. For 
issues of freedom, how a distro installs a given package is not significant; if it presents that package as an 
option, or its web site does, we say it “contains” that package. 

The users of a free system have control over it, so they can install whatever they wish. Free distros 
provide general facilities with which users can install their own programs and their modified versions of 
free programs; they can also install nonfree programs. Providing these general facilities is not an ethical 
flaw in the distro, because the distro's developers are not responsible for what users get and install on 
their own initiative. 

The developers become responsible for installation of nonfree software when they steer the users 
toward a nonfree program—for instance, by putting it in the distro's list of packages, or distributing it 
from their server, or presenting it as a solution rather than a problem. This is the point where most 
GNU/Linux distros have an ethical flaw. 

People who install software packages on their own have a certain level of sophistication: if we tell them 
“Baby contains nonfree code, but Gbaby is free,” we can expect them to take care to remember which 
is which. But distros are recommended to ordinary users who would forget such details. They would 
think, “What name did they say I should use? I think it was Baby.” 

Therefore, to recommend a distro to the general public, we insist that its name not be similar to a 
distro we reject, so our message recommending only the free distro can be reliably transmitted. 

Another difference between a distro and a software package is how likely it is for nonfree code to be 
added. The developers of a program carefully check the code they add. If they have decided to make the 
program free, they are unlikely to add nonfree code. There have been exceptions, including the very 
harmful case of the “binary blobs” that were added to Linux, but they are a small fraction of the free 
programs that exist. 

By contrast, a GNU/Linux distro typically contains thousands of packages, and the distro's developers 
may add hundreds of packages a year. Without a careful effort to avoid packages that contain some 
nonfree software, some will surely creep in. Since the free distros are few in number, we ask the 
developers of each free distro to make a commitment to keep the distro free software by removing any 
nonfree code or malware, as a condition for listing that distro. See the GNU free system distribution 
guidelines. 

39

https://www.gnu.org/distros/free-system-distribution-guidelines.html
https://www.gnu.org/distros/free-system-distribution-guidelines.html


We don't ask for such promises for free software packages: it's not feasible, and fortunately not 
necessary. To get promises from the developers of 30,000 free programs to keep them free would avoid 
a few problems, at the cost of much work for the FSF staff; in addition, most of those developers have 
no relationship with the GNU Project and might have no interest in making us any promises. So we 
deal with the rare cases that change from free to nonfree, when we find out about them. 

Peripherals 

A computer peripheral needs software in the computer—perhaps a driver, perhaps firmware to be 
loaded by the system into the peripheral to make it run. Thus, a peripheral is acceptable to use and 
recommend if it can be used from a computer that has no nonfree software installed—the peripheral's 
driver, and any firmware that the system needs to load into it, are free. 

It is simple to check this: connect the peripheral to a computer running a totally free GNU/Linux 
distro and see if it works. But most users would like to know before they buy the peripheral, so we list 
information about many peripherals in h-node.org, a hardware database for fully free operating 
systems. 

Computers 

A computer contains software at various levels. On what criterion should we certify that a computer 
“Respects Your Freedom”? 

Obviously the operating system and everything above it must be free. In the 90s, the startup software 
(BIOS, then) became replaceable, and since it runs on the CPU, it is the same sort of issue as the 
operating system. Thus, programs such as firmware and drivers that are installed in or with the system 
or the startup software must be free. 

If a computer has hardware features that require nonfree drivers or firmware installed with the system, 
we may be able to endorse it. If it is usable without those features, and if we think most people won't 
be led to install the nonfree software to make them function, then we can endorse it. Otherwise, we 
can't. This will be a judgment call. 

A computer can have modifiable preinstalled firmware and microcode at lower levels. It can also have 
code in true read-only memory. We decided to ignore these programs in our certification criteria today, 
because otherwise no computer could comply, and because firmware that is not normally changed is 
ethically equivalent to circuits. So our certification criteria cover only the code that runs on the 
computer's main processor and is not in true read-only memory. When and as free software becomes 
possible for other levels of processing, we will require free software at those levels too. 

40

https://www.h-node.org/


Since certifying a product is active promotion of it, we insist that the seller support us in return, by 
talking about free software rather than open source and referring to the combination of GNU and 
Linux as “GNU/Linux”. We have no obligation to actively promote projects that won't recognize our 
work and support our movement. 

See our certification criteria . 62

Web pages 

Nowadays many web pages contain complex JavaScript programs and won't work without them. This 
is a harmful practice since it hampers users' control over their computing. Furthermore, most of these 
programs are nonfree, an injustice. Often the JavaScript code spies on the user. JavaScript has morphed 
into a attack on users' freedom.  63

To address this problem, we have developed LibreJS , an add-on for Firefox that blocks nontrivial 64

nonfree JavaScript code. (There is no need to block the simple scripts that implement minor user 
interface hacks.) We ask sites to please free their JavaScript programs and mark their licenses for LibreJS 
to recognize. 

Meanwhile, is it ethical to link to a web page that contains a nonfree JavaScript program? If we were 
totally unyielding, we would link only to free JavaScript code. However, many pages do work even 
when their JavaScript code is not run. Also, you will most often encounter nonfree JavaScript in other 
ways besides following our links; to avoid it, you must use LibreJS or disable JavaScript. So we have 
decided to go ahead and link to pages that work without nonfree JavaScript, while urging users to 
protect themselves from nonfree JavaScript in general. 

However, if a page can't do its job without running the nonfree JavaScript code, linking to it 
undeniably asks people to run that nonfree code. On principle, we do not link to such pages. 

Conclusion 

Applying the basic idea that software should be free to different situations leads to different practical 
policies. As new situations arise, the GNU Project and the Free Software Foundation will adapt our 
freedom criteria so as to lead computer users towards freedom, in practice and in principle. By 
recommending only freedom-respecting programs, distros, and hardware products, and stating your 
policy, you can give much-needed support to the free software movement. 

- END OF CHAPTER 

41

https://www.gnu.org/philosophy/free-software-even-more-important.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/gnu/linux-and-gnu.html
https://www.fsf.org/resources/hw/endorsement/criteria
https://www.gnu.org/philosophy/javascript-trap.html
https://www.gnu.org/philosophy/javascript-trap.html
https://www.gnu.org/software/librejs


Chapter X: Imperfection is not the same as 
oppression 

by Richard Stallman 

When a free program lacks capabilities that users want, that is unfortunate; we urge people to add what 
is missing. Some would go further and claim that a program is not even free software if it lacks certain 
functionality—that it denies freedom 0 (the freedom to run the program as you wish) to users or uses 
that it does not support. This argument is misguided because it is based on identifying capacity with 
freedom, and imperfection with oppression. 

Each program inevitably has certain functionalities and lacks others that might be desirable. There are 
some jobs it can do, and others it can't do without further work. This is the nature of software. 

The absence of key functionality can mean certain users find the program totally unusable. For 
instance, if you only understand graphical interfaces, a command line program may be impossible for 
you to use. If you can't see the screen, a program without a screen reader may be impossible for you to 
use. If you speak only Greek, a program with menus and messages in English may be impossible for 
you to use. If your programs are written in Ada, a C compiler is impossible for you to use. To overcome 
these barriers yourself is unreasonable to demand of you. Free software really ought to provide the 
functionality you need. 

Free software really ought to provide it, but the lack of that feature does not make the program 
nonfree, because it is an imperfection, not oppression. 

Making a program nonfree is an injustice committed by the developer that denies freedom to whoever 
uses it. The developer deserves condemnation for this. It is crucial to condemn that developer, because 
nobody else can undo the injustice as long as the developer continues to do it. We can, and do, try to 
rescue the victims by developing a free replacement, but we can't make the nonfree program free. 

Developing a free program without adding a certain important feature is not doing wrong to anyone. 
Rather, it's doing some good but not all the good that people need. Nobody in particular deserves 
condemnation for not developing the missing feature, since any capable person could do it. It would be 
ungrateful, as well as self-defeating, to single out the free program's authors for blame for not having 
done some additional work. 

What we can do is state that completing the job calls for doing some additional work. That is 
constructive because it helps us convince someone to do that work. 

42



If you think a certain extension in a free program is important, please push for it in the way that 
respects our contributors. Don't criticize the people who contributed the useful code we have. Rather, 
look for a way to complete the job. You can urge the program's developers to turn their attention to the 
missing feature when they have time for more work. You can offer to help them. You can recruit people 
or raise funds to support the work. 

- END OF CHAPTER 

43



Chapter XI: Android and Users' Freedom 

by Richard Stallman 

To what extent does Android respect the freedom of its users? For a computer user that values 
freedom, that is the most important question to ask about any software system. 

In the free/libre software movement, we develop software that respects users' freedom, so we 
and you can escape from software that doesn't. By contrast, the idea of “open source” focuses on 
how to develop code; it is a different current of thought whose principal value is code quality 
rather than freedom. Thus, the concern here is not whether Android is “open,” but whether it 
allows users to be free. 

Android is an operating system primarily for mobile phones and other devices, which consists of 
Linux (Torvalds' kernel), some libraries, a Java platform and some applications. Linux aside, the 
software of Android versions 1 and 2 was mostly developed by Google; Google released it under 
the Apache 2.0 license, which is a lax free software license without copyleft. 

The version of Linux included in Android is not entirely free software, since it contains nonfree 
“binary blobs” (just like Torvalds' version of Linux), some of which are really used in some 
Android devices. Android platforms use other nonfree firmware, too, and nonfree libraries. Aside 
from those, the source code of Android versions 1 and 2, as released by Google, is free software
—but this code is insufficient to run the device. Some of the applications that generally come 
with Android are nonfree, too. 

Android is very different from the GNU/Linux operating system  because it contains very little of 65

GNU. Indeed, just about the only component in common between Android and GNU/Linux is 
Linux, the kernel. People who erroneously think “Linux” refers to the entire GNU/Linux 
combination get tied in knots by these facts, and make paradoxical statements such as “Android 
contains Linux, but it isn't Linux.”(1) Absent this confusion, the situation is simple: Android contains 
Linux, but not GNU; thus, Android and GNU/Linux are mostly different, because all they have in 
common is Linux. 

Within Android, Linux the kernel remains a separate program, with its source code under GNU GPL 
version 2 . To combine Linux with code under the Apache 2.0 license would be copyright 66

infringement, since GPL version 2 and Apache 2.0 are incompatible . Rumors that Google has 67

somehow converted Linux to the Apache license are erroneous; Google has no power to change the 
license on the code of Linux, and did not try. If the authors of Linux allowed its use under GPL version 
3, then that code could be combined with Apache-licensed code, and the combination could be 
released under GPL version 3. But Linux has not been released that way. 

44

https://fsf.org/
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/free-open-overlap.html
https://www.gnu.org/licenses/copyleft.html
https://www.gnu.org/gnu/thegnuproject.html
https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/license-list.html#apache2
https://www.gnu.org/licenses/gpl.html
https://www.gnu.org/licenses/gpl.html


Google has complied with the requirements of the GNU General Public License for Linux, but the 
Apache license on the rest of Android does not require source release. Google said it would never 
publish the source code of Android 3.0 (aside from Linux). Android 3.1 source code was also 
withheld, making Android 3, apart from Linux, nonfree software pure and simple. 

Google said it withheld the 3.0 source code because it was buggy, and that people should wait for the 
next release. That may be good advice for people who simply want to run the Android system, but the 
users should be the ones to decide this. Anyway, developers and tinkerers who want to include some of 
the changes in their own versions could use that code just fine. 

Fortunately, Google later released the source code for Android 3.* when it released version 4 (also with 
source code). The problem above turned out to be a temporary aberration rather than a policy shift. 
However, what happens once may happen again. 

In any case, most of the source code of various versions of Android has been released as free software. 
Does that mean that products using those Android versions respect users' freedom? No, for several 
reasons. 

First of all, most of them contain nonfree Google applications for talking to services such as YouTube 
and Google Maps. These are officially not part of Android, but that doesn't make the product ok. 
Many of the free applications available for earlier versions of Android have been replaced by nonfree 
applications ; in 2013 Android devices appeared which provided no way to view photos except 68

through a nonfree Google+ app . In 2014 Google announced that Android versions for TVs, watches 69

and cars would be largely nonfree.  70

Most Android devices come with the nonfree Google Play software (formerly “Android Market”). This 
software invites users with a Google account to install nonfree apps. It also has a back door with which 
Google can forcibly install or deinstall apps. (This probably makes it a universal back door, though that 
is not proved.) Google Play is officially not part of Android, but that doesn't make it any less bad. 

Google has moved many basic general facilities into the nonfree Google Play Services library . If an 71

app's own code is free software but it depends on Google Play Services, that app as a whole is effectively 
nonfree; it can't run on a free version of Android, such as Replicant. 

If you value freedom, you don't want the nonfree apps that Google Play offers. To install free Android 
apps, you don't need Google Play, because you can get them from f-droid.org. 

Android products also come with nonfree libraries. These are officially not part of Android, but since 
various Android functionalities depend on them, they are part of any real Android installation. 

45

https://arstechnica.com/gadgets/2013/10/googles-iron-grip-on-android-controlling-open-source-by-any-means-necessary/
https://arstechnica.com/gadgets/2013/10/googles-iron-grip-on-android-controlling-open-source-by-any-means-necessary/
https://www.greenbot.com/new-google-play-edition-devices-lack-photo-gallery-app-use-google/
https://www.greenbot.com/new-google-play-edition-devices-lack-photo-gallery-app-use-google/
https://arstechnica.com/gadgets/2014/06/android-wear-auto-and-tv-save-you-from-skins-and-oems-from-themselves/
https://arstechnica.com/gadgets/2014/06/android-wear-auto-and-tv-save-you-from-skins-and-oems-from-themselves/
https://blog.grobox.de/2016/the-proprietarization-of-android-google-play-services-and-apps/
https://f-droid.org/


Even the programs that are officially part of Android may not correspond to the source code Google 
releases. Manufacturers may change this code, and often they don't release the source code for their 
versions. The GNU GPL requires them to distribute the code for their versions of Linux, assuming 
they comply. The rest of the code, under the lax Apache license, does not require them to release the 
source version that they really use. 

One user discovered that many of the programs in the Android system that came with his phone were 
modified to send personal data to Motorola.  Some manufacturers add a hidden general surveillance 72

package such as Carrier IQ.  73

Replicant  is the free version of Android. The Replicant developers have replaced many nonfree 74

libraries, for certain device models. The nonfree apps are excluded, but you certainly don't want to use 
those. By contrast, CyanogenMod (another modified version of Android) is nonfree, as it contains 
some nonfree programs. 

Many Android devices are “tyrants”: they are designed so users cannot install and run their own 
modified software, only the versions approved by some company. In that situation, the executables are 
not free even if they were made from sources that are free and available to you. However, some 
Android devices can be “rooted” so users can install different software. 

Important firmware or drivers are generally proprietary also. These handle the phone network radio, 
WiFi, bluetooth, GPS, 3D graphics, the camera, the speaker, and in some cases the microphone too. 
On some models, a few of these drivers are free, and there are some that you can do without—but you 
can't do without the microphone or the phone network radio. 

The phone network firmware comes preinstalled. If all it did was sit there and talk to the phone 
network when you wish, we could regard it as equivalent to a circuit. When we insist that the software 
in a computing device must be free, we can overlook preinstalled firmware that will never be upgraded, 
because it makes no difference to the user that it's a program rather than a circuit. 

Unfortunately, in this case it would be a malicious circuit. Malicious features are unacceptable no 
matter how they are implemented. 

On most Android devices, this firmware has so much control that it could turn the product into a 
listening device. On some, it controls the microphone. On some, it can take full control of the main 
computer, through shared memory, and can thus override or replace whatever free software you have 
installed. With some, perhaps all, models it is possible to exercise remote control of this firmware to 
overwrite the rest of the software in the device. The point of free software is that we have control of our 
software and our computing; a system with a back door doesn't qualify. While any computing system 
might have bugs, these devices can be bugs. (Craig Murray, in Murder in Samarkand, relates his 

46

https://www.beneaththewaves.net/Projects/Motorola_Is_Listening.html
https://androidsecuritytest.com/features/logs-and-services/loggers/carrieriq/
https://androidsecuritytest.com/features/logs-and-services/loggers/carrieriq/
https://replicant.us/
https://www.theguardian.com/books/2006/aug/12/politics


involvement in an intelligence operation that remotely converted an unsuspecting target's non-
Android portable phone into a listening device.) 

In any case, the phone network firmware in an Android phone is not equivalent to a circuit, because 
the hardware allows installation of new versions and this is actually done. Since it is proprietary 
firmware, in practice only the manufacturer can make new versions—users can't. 

Putting these points together, we can tolerate nonfree phone network firmware provided new versions 
of it won't be loaded, it can't take control of the main computer, and it can only communicate when 
and as the free operating system chooses to let it communicate. In other words, it has to be equivalent 
to circuitry, and that circuitry must not be malicious. There is no technical obstacle to building an 
Android phone which has these characteristics, but we don't know of any. 

Android is not a self-hosting system; development for Android needs to be done on some other system. 
The tools in Google's “software development kit” (SDK) appear to be free, but it is hard work to check 
this. The definition files for certain Google APIs are nonfree. Installing the SDK requires signing a 
proprietary software license, which you should refuse to sign. Replicant's SDK is a free replacement. 

Recent press coverage of Android focuses on the patent wars. During 20 years of campaigning for the 
abolition of software patents, we have warned such wars could happen. Software patents could force 
elimination of features from Android, or even make it unavailable. See endsoftpatents.org for more 
information about why software patents must be abolished. 

However, the patent attacks and Google's responses are not directly relevant to the topic of this article: 
how Android products partly approach an ethically system of distribution, and how they fall short. 
This issue merits the attention of the press too. 

Android is a major step towards an ethical, user-controlled, free software portable phone, but there is a 
long way to go, and Google is taking it in the wrong direction. Hackers are working on Replicant, but 
it's a big job to support a new device model, and there remains the problem of the firmware. Even 
though the Android phones of today are considerably less bad than Apple or Windows phones, they 
cannot be said to respect your freedom. 

Footnote 

1. The extreme example of this confusion appears in the site linuxonandroid.com, which 
offers help to “install Linux [sic] on your Android devices.” This is entirely false: what 
they are installing is a version of the GNU system, excluding Linux, which is already 
present as part of Android. Since that site supports only nonfree GNU/Linux distros, we 
do not recommend it. 

47

https://redmine.replicant.us/projects/replicant/wiki/ReplicantSDK
https://endsoftpatents.org/
https://replicant.us/
https://www.gnu.org/distros/distros.html


Chapter XII: Free Software is More Reliable! 

Apologists for proprietary software like to say, “free software is a nice dream, but we all know that only 
the proprietary system can produce reliable products. A bunch of hackers just can't do this.” 

Empirical evidence disagrees, however; scientific tests, described below, have found GNU software to 
be more reliable than comparable proprietary software. 

This should not be a surprise; there are good reasons for the high reliability of GNU software, good 
reasons to expect free software will often (though not always) have high reliability. 

GNU Utilities Safer! 

Barton P. Miller and his colleagues tested the reliability of Unix utility programs in 1990 and 1995. 
Each time, GNU's utilities came out considerably ahead. They tested seven commercial Unix systems 
as well as GNU. By subjecting them to a random input stream, they could “crash (with core dump) or 
hang (infinite loop) over 40% (in the worst case) of the basic utility programs…” 

These researchers found that the commercial Unix systems had a failure rate that ranged from 15% to 
43%. In contrast, the failure rate for GNU was only 7%. 

Miller also said that, “the three commercial systems that we compared in both 1990 and 1995 
noticeably improved in reliability, but still had significant rates of failure (the basic utilities from 
GNU/Linux still were noticeably better than those of the commercial systems).” 

For details, see their paper: Fuzz Revisited: A Re-examination of the Reliability of Unix Utilities and 
Services (postscript 223k)  by Barton P. Miller <bart@cs.wisc.edu>, David Koski, Cjin Pheow Lee, 75

Vivekananda Maganty, Ravi Murthy, Ajitkumar Natarajan, and Jeff Steidl. 

Why Free Software is More Reliable 

It is no fluke that the GNU utilities are so reliable. There are good reasons why free software tends to 
be of high quality. 

One reason is that free software gets the whole community involved in working together to fix 
problems. Users not only report bugs, they even fix bugs and send in fixes. Users work together, 
conversing by email, to get to the bottom of a problem and make the software work trouble-free. 

Another is that developers really care about reliability. Free software packages do not always compete 
commercially, but they still compete for a good reputation, and a program which is unsatisfactory will 

48

https://www.gnu.org/philosophy/categories.html#ProprietarySoftware
https://www.gnu.org/philosophy/free-sw.html
ftp://ftp.cs.wisc.edu/pub/paradyn/technical_papers/fuzz-revisited.ps
ftp://ftp.cs.wisc.edu/pub/paradyn/technical_papers/fuzz-revisited.ps
mailto:bart@cs.wisc.edu


not achieve the popularity that developers hope for. What's more, an author who makes the source 
code available for all to see puts his reputation on the line, and had better make the software clean and 
clear, on pain of the community's disapproval. 

Cancer Clinic Relies on Free Software! 

The Roger Maris Cancer Center in Fargo, North Dakota (the same Fargo which was the scene of a 
movie and a flood) uses Linux-based GNU systems precisely because reliability is essential. A network 
of GNU/Linux machines runs the information system, coordinates drug therapies, and performs 
many other functions. This network needs to be available to the Center's staff at a moment's notice. 

According to Dr. G.W. Wettstein <greg@wind.rmcc.com>: 

The proper care of our cancer patients would not be what it is today without [GNU/]Linux … The 
tools that we have been able to deploy from free software channels have enabled us to write and 
develop innovative applications which … do not exist through commercial avenues. 

- END OF CHAPTER 

49

mailto:greg@wind.rmcc.com


Chapter XIII: Why Free Software Needs Free 
Documentation 

The biggest deficiency in free operating systems is not in the software—it is the lack of good free 
manuals that we can include in these systems. Many of our most important programs do not come 
with full manuals. Documentation is an essential part of any software package; when an important free 
software package does not come with a free manual, that is a major gap. We have many such gaps today. 

Once upon a time, many years ago, I thought I would learn Perl. I got a copy of a free manual, but I 
found it hard to read. When I asked Perl users about alternatives, they told me that there were better 
introductory manuals—but those were not free (not freedom-respecting). 

Why was this? The authors of the good manuals had written them for O'Reilly Associates, which 
published them with restrictive terms—no copying, no modification, source files not available—which 
made them nonfree, thus excluded them from the Free World. 

That wasn't the first time this sort of thing has happened, and (to our community's great loss) it was far 
from the last. Proprietary manual publishers have enticed a great many authors to restrict their manuals 
since then. Many times I have heard a GNU user eagerly tell me about a manual that he is writing, with 
which he expects to help the GNU Project—and then had my hopes dashed, as he proceeded to explain 
that he had signed a contract with a publisher that would restrict it so that we cannot use it. 

Given that writing good English is a rare skill among programmers, we can ill afford to lose manuals 
this way. 

Free documentation, like free software, is a matter of freedom, not price. The problem with these 
manuals was not that O'Reilly Associates charged a price for printed copies—that in itself is fine. (The 
Free Software Foundation sells printed copies  of free GNU manuals , too.) But GNU manuals are 76 77

available in source code form, while these manuals are available only on paper. GNU manuals come 
with permission to copy and modify; the Perl manuals do not. These restrictions are the problems. 

The criterion for a free manual is pretty much the same as for free software: it is a matter of giving all 
users certain freedoms. Redistribution (including commercial redistribution) must be permitted, so 
that the manual can accompany every copy of the program, on line or on paper. Permission for 
modification is crucial too. 

• The GNU Free Documentation License  78

As a general rule, I don't believe that it is essential for people to have permission to modify all sorts of 
articles and books. The issues for writings are not necessarily the same as those for software. For 

50

https://shop.fsf.org/category/books/
https://www.gnu.org/doc/doc.html
https://www.gnu.org/licenses/fdl.html


example, I don't think you or I are obliged to give permission to modify articles like this one, which 
describe our actions and our views. 

But there is a particular reason why the freedom to modify is crucial for documentation for free 
software. When people exercise their right to modify the software, and add or change its features, if 
they are conscientious they will change the manual too—so they can provide accurate and usable 
documentation with the modified program. A manual which forbids programmers from being 
conscientious and finishing the job, or more precisely requires them to write a new manual from 
scratch if they change the program, does not fill our community's needs. 

While a blanket prohibition on modification is unacceptable, some kinds of limits on the method of 
modification pose no problem. For example, requirements to preserve the original author's copyright 
notice, the distribution terms, or the list of authors, are OK. It is also no problem to require modified 
versions to include notice that they were modified, even to have entire sections that may not be deleted 
or changed, as long as these sections deal with nontechnical topics. (Some GNU manuals have them.) 

These kinds of restrictions are not a problem because, as a practical matter, they don't stop the 
conscientious programmer from adapting the manual to fit the modified program. In other words, 
they don't block the free software community from making full use of the manual. 

However, it must be possible to modify all the technical content of the manual, and then distribute the 
result through all the usual media, through all the usual channels; otherwise, the restrictions do block 
the community, the manual is not free, and so we need another manual. 

Unfortunately, it is often hard to find someone to write another manual when a proprietary manual 
exists. The obstacle is that many users think that a proprietary manual is good enough—so they don't 
see the need to write a free manual. They do not see that the free operating system has a gap that needs 
filling. 

Why do users think that proprietary manuals are good enough? Some have not considered the issue. I 
hope this article will do something to change that. 

Other users consider proprietary manuals acceptable for the same reason so many people consider 
proprietary software acceptable: they judge in purely practical terms, not using freedom as a criterion. 
These people are entitled to their opinions, but since those opinions spring from values which do not 
include freedom, they are no guide for those of us who do value freedom. 

Please spread the word about this issue. We continue to lose manuals to proprietary publishing. If we 
spread the word that proprietary manuals are not sufficient, perhaps the next person who wants to help 
GNU by writing documentation will realize, before it is too late, that he must above all make it free. 

51



We can also encourage commercial publishers to sell free, copylefted manuals instead of proprietary 
ones. One way you can help this is to check the distribution terms of a manual before you buy it, and 
prefer copylefted manuals to noncopylefted ones. 

[Note: We maintain a page that lists free books available from other publishers ]. 79

- END OF CHAPTER 

52

https://www.gnu.org/doc/other-free-books.html


Chapter XIV: Should Rockets Have Only Free 
Software? Free Software and Appliances 

by Richard Stallman 

Could there be a rocket that is totally free software? Should we demand that SpaceX liberate the 
software in its satellite launching rockets? I don't think the person who asked me this was serious, but 
answering that question may illuminate similar issues about the sorts of products people really buy 
today. 

As far as I know, software as such is not capable of generating thrust. A rocket is necessarily principally 
a physical device, so it can't literally be free software. But it may include computerized control and 
telemetry systems, and thus software. 

If someone offered to sell me a rocket, I would treat it like any other appliance. Consider, for instance, a 
thermostat. If it contains software to be modified, all the software in it needs to be free, and I alone 
should have the authority to decide whether to install some change. If, however, the software in it is 
not meant ever to be altered, and it communicates only through some limited interface, such as buttons 
on the control panel, a TV remote control, or a USB interface with a fixed set of commands, I would 
not consider it crucial to know what is inside the thermostat: whether it contains a special-purpose 
chip, or a processor running code, makes no direct difference to me as user. If it does contain code, it 
might as well have a special chip instead, so I don't need to care which it is. 

I would object if that thermostat sent someone data about my activities, regardless of how that was 
implemented. Once again, special chip or special code makes no direct difference. Free software in it 
could give me a way to turn off the surveillance, but that is not the only way. Another is by 
disconnecting its digital communication antennas, or switching them off. 

If the rocket contains software, releasing that as free software can be a contribution to the community, 
and we should appreciate that contribution—but that is a different issue. Such release also makes it 
possible for people who have bought the rockets to work on improving the software in them, though 
the irreversible nature of many rocket failures may discourage tinkering. 

Readers have pointed out that SpaceX has received important financial support from the US 
government  to develop its rockets. By rights, accepting this support should require SpaceX to release 80

the rocket software under a free license, even if it uses that software only inside its own rockets. 

Given the experience of Tesla cars, which are full of surveillance and tracking malware that Tesla can 
change but the owner can't, I suppose SpaceX rockets have that too. If someday rockets are sold like 

53

https://www.theverge.com/2019/6/18/18683455/nasa-space-angels-contracts-government-investment-spacex-air-force
https://www.theverge.com/2019/6/18/18683455/nasa-space-angels-contracts-government-investment-spacex-air-force


today's cars and tractors, software in them would be unjust, and it would probably be malware. If the 
manufacturer could install modified software in it but the owner could not, that too would be unjust. 
People are starting to recognize this: look at the right-to-repair movement, which demands only the 
beginning of these freedoms (much less than freeing the car's software) and nonetheless faces a hard 
fight. 

However, I don't think SpaceX sells rockets; I think it provides the service of launching payloads in its 
own rockets. That makes the issue totally different: if you are a customer, you're not operating the 
rocket; SpaceX is doing that. 

The rocket that SpaceX uses is not like your own car or van, or even a car or van leased to you. Rather, 
it's comparable to a moving company's van that is, for the moment, transporting your books and 
furniture to your specified destination. It is the moving company that deserves control over the 
software in that van—not the customer of the moment. 

It makes sense to treat the job of transporting your things to Outer Mongolia, or to outer space, as a 
service because the job is mostly self-contained and mostly independent of the customer (“mostly” 
does not mean “absolutely” or “100%”), so the instructions for the job are simple (take these boxes to 
address A by date D). 

If SpaceX has released the rocket software under a free license, that would give you the right to make, 
use and distribute modified versions, but would not give you the right to modify the code running in 
SpaceX's rocket. 

But there is a kind of activity which a hypothetical future spaceship might do, which should never be 
treated as a service: private computational activity. That's because a private computational activity is 
exactly what you could do on your own computer in freedom, given suitable free software. 

When a program's task is to do computing for you, you are entitled to demand control over what it 
does and how, not just that it obey your orders as it interprets them. You are entitled, in other words, to 
use your own copy of a free program, running on a computer you control. 

No wonder there are companies that would like you to cede control over your computing activities to 
them, by labeling those activities as “services” to be done on their servers with programs that they 
control. Even things as minutely directed by the user as text editing! This is a scheme to get you to 
substitute their power for your freedom. We call that “Service as a Software Substitute,” SaaSS for short 
(see “Who does that server really serve?”), and we reject it. 

For instance, imagine a hypothetical SpaceX Smart Spaceship, which as a “service” wants to know all 
about your business so SpaceX servers can decide for you what cargoes to buy and sell on which 

54

https://www.gnu.org/philosophy/free-software-even-more-important.html
https://www.gnu.org/proprietary/proprietary.html
https://www.gnu.org/philosophy/who-does-that-server-really-serve.html


planets. That planning service would be SaaSS—therefore a dis-service. Instead of using that dis-
service, you should do that planning with your copy of free software on your own computer. 

SpaceX and others could then legitimately offer you the non-computational service of transporting 
cargoes, and you could use it sometimes; or you could choose some other method, perhaps to buy a 
spaceship and operate it yourself. 

- END OF CHAPTER 

55



Chapter XV: Free Hardware and Free Hardware 
Designs 

by Richard Stallman 

To what extent do the ideas of free software extend to hardware? Is it a moral obligation to make our 
hardware designs free, just as it is to make our software free? Does maintaining our freedom require 
rejecting hardware made from nonfree designs? 

Definitions 

Free software is a matter of freedom, not price; broadly speaking, it means that users are free to use the 
software and to copy and redistribute the software, with or without changes. More precisely, the 
definition is formulated in terms of the four essential freedoms. To emphasize that “free”refers to 
freedom, not price, we often use the French or Spanish word “libre” along with “free.” 

Applying the same concept directly to hardware, free hardware means hardware that users are free to 
use and to copy and redistribute with or without changes. However, there are no copiers for hardware, 
aside from keys, DNA, and plastic objects' exterior shapes. Most hardware is made by fabrication from 
some sort of design. The design comes before the hardware. 

Thus, the concept we really need is that of a free hardware design. That's simple: it means a design that 
permits users to use the design (i.e., fabricate hardware from it) and to copy and redistribute it, with or 
without changes. The design must provide the same four freedoms that define free software. 

Then we can refer to hardware made from a free design as “free hardware,” but “free-design hardware” 
is a clearer term since it avoids possible misunderstanding. 

People first encountering the idea of free software often think it means you can get a copy gratis. Many 
free programs are available for zero price, since it costs you nothing to download your own copy, but 
that's not what “free” means here. (In fact, some spyware programs such as Flash Player and Angry 
Birds  are gratis although they are not free.) Saying “libre” along with “free” helps clarify the point. 81

For hardware, this confusion tends to go in the other direction; hardware costs money to produce, so 
commercially made hardware won't be gratis (unless it is a loss-leader or a tie-in), but that does not 
prevent its design from being free/libre. Things you make in your own 3D printer can be quite cheap 
to make, but not exactly gratis since the raw materials will typically cost something. In ethical terms, 
the freedom issue trumps the price issue totally, since a device that denies freedom to its users is worth 
less than nothing. 

56

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/proprietary/proprietary-surveillance.html
https://www.gnu.org/proprietary/proprietary-surveillance.html


We can use the term “libre hardware” as a concise equivalent for “hardware made from a free (libre) 
design.” 

The terms “open hardware” and “open source hardware” are used by some with the same concrete 
meaning as “free-design hardware,” but those terms downplay freedom as an issue. They were derived 
from the term “open source software,” which refers more or less to free software but without talking 
about freedom or presenting the issue as a matter of right or wrong. To underline the importance of 
freedom, we make a point of referring to freedom whenever it is pertinent; since “open” fails to do that, 
let's not substitute it for “free.” 

Hardware and Software 

Hardware and software are fundamentally different. A program, even in compiled executable form, is a 
collection of data which can be interpreted as instructions for a computer. Like any other digital work, 
it can be copied and changed using a computer. A copy of a program has no inherent preferred physical 
form or embodiment. 

By contrast, hardware is a physical structure and its physicality is crucial. While the hardware's design 
might be represented as data, in some cases even as a program, the design is not the hardware. A design 
for a CPU can't execute a program. You won't get very far trying to type on a design for a keyboard or 
display pixels on a design for a screen. 

Furthermore, while you can use a computer to modify or copy the hardware design, a computer can't 
convert the design into the physical structure it describes. That requires fabrication equipment. 

The Boundary between Hardware and Software 

What is the boundary, in digital devices, between hardware and software? It follows from the 
definitions. Software is the operational part of a device that can be copied, and modified with a 
computer; hardware is the operational part that can't be. This is the right way to make the distinction 
because it relates to the practical consequences. 

There is a gray area between hardware and software that contains firmware that can be upgraded or 
replaced, but is not meant ever to be upgraded or replaced once the product is sold. Or perhaps it is 
possible but unusual, or the manufacturer can release a replacement but you can't. In conceptual 
terms, the gray area is rather narrow. In practice, it is important because many products fall in it. 
Indeed, nowadays keyboards, cameras, disk drives and USB memories typically contain an embedded 
nonfree program that could be replaced by the manufacturer. 

57

https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html


We can think of the difference between built-in firmware and equivalent hardware as a minor 
implementation detail, provided that we are sure in either case that it won't be changed. A hardware 
circuit can't be changed; that's its nature. If it's acceptable for a device to be implemented with internal 
circuitry that no one can alter, then an internal program that no one can alter is no worse. It would not 
be sensible to reject an equivalent internal software implementation, when operationally they are 
indistinguishable. 

The equivalence falls apart, however, when the software implementation is not totally internal and 
some company can modify that code. For example, when firmware needs to be copied into the device 
to make the device function, or included in the system distribution that you install, that is no internal 
software implementation; rather, it is a piece of installed nonfree software. It is unjust because some 
manufacturer can change it but you can't. 

In order for a firmware program to be morally equivalent to hardware, it must be unmodifiable. What 
about when the device can't possibly run without some firmware and it offers a way to modify that? 
We can make that firmware unmodifiable in practice by taking care never to let that replacement 
happen. This solution is not entirely clean, but no entirely clean solution has been proposed; this is the 
only way we know to preserve some meaning for the rejection of nonfree software while using that 
device. This is much better than just giving up. 

But we can't have it both ways. To make preinstalled firmware effectively unmodifiable by not letting 
anyone invoke the method to change it, we must carry that out without exception even when there are 
changes we would wish were installed. That means rejecting all upgrades or patches to that firmware. 

Some have said that preinstalled firmware programs and Field-Programmable Gate Array chips 
(FPGAs) “blur the boundary between hardware and software,” but I think that is a misinterpretation 
of the facts. Firmware that is installed during use is software; firmware that is delivered inside the device 
and can't be changed is software by nature, but we can treat it as if it were a circuit. As for FPGAs, the 
FPGA itself is hardware, but the gate pattern that is loaded into the FPGA is a kind of firmware. 

Running free gate patterns on FPGAs could potentially be a useful method for making digital devices 
that are free at the circuit level. However, to make FPGAs usable in the free world, we need free 
development tools for them. The obstacle is that the format of the gate pattern file that gets loaded into 
the FPGA is secret. For many years there was no model of FPGA for which those files could be 
produced without nonfree (proprietary) tools. 

As of 2015, free software tools are available for programming the Lattice iCE40 , a common model of 82

FPGA, from input written in a hardware description language (HDL). It is also possible to compile C 
programs and run them on the Xilinx Spartan 6 LX9 FPGA with free tools , but those do not 83

58

https://web.archive.org/web/20211106213411/http://www.clifford.at/icestorm/
https://gothub.projectsegfau.lt/Wolfgang-Spraul/fpgatools/


support HDL input. We recommend that you reject other FPGA models until they too are supported 
by free tools. 

As for the HDL code itself, it can act as software (when it is run on an emulator or loaded into an 
FPGA) or as a hardware design (when it is realized in immutable silicon or a circuit board). 

The Ethical Question for 3D Printers 

Ethically, software must be free; a nonfree program is an injustice. Should we take the same view for 
hardware designs? 

We certainly should, in the fields that 3D printing (or, more generally, any sort of personal fabrication) 
can handle. Printer patterns to make a useful, practical object (i.e., functional rather than decorative) 
must be free because they are works made for practical use. Users deserve control over these works, just 
as they deserve control over the software they use. Distributing a nonfree functional object design is as 
wrong as distributing a nonfree program. 

So make sure to choose 3D printers that work with exclusively free software; the Free Software 
Foundation endorses such printers . 84

Must We Reject Nonfree Digital Hardware? 

Is a nonfree digital [1] hardware design an injustice? Must we, for our freedom's sake, reject all digital 
hardware made from nonfree designs, as we must reject nonfree software? 

Due to the conceptual parallel between hardware designs and software source code, many hardware 
hackers are quick to condemn nonfree hardware designs just like nonfree software. I disagree because 
the circumstances for hardware and software are different. 

Present-day chip and board fabrication technology resembles the printing press: it lends itself to mass 
production in a factory. It is more like copying books in 1950 than like copying software today. 

Freedom to copy and change software is an ethical imperative because those activities are feasible for 
those who use software: the equipment that enables you to use the software (a computer) is also 
sufficient to copy and change it. Today's mobile computers are too weak to be good for this, but 
anyone can find a computer that's powerful enough. 

Moreover, a computer suffices to download and run a version changed by someone else who knows 
how, even if you are not a programmer. Indeed, nonprogrammers download software and run it every 
day. This is why free software makes a real difference to nonprogrammers. 

59

https://www.gnu.org/philosophy/free-software-even-more-important.html
https://ryf.fsf.org/


How much of this applies to hardware? Not everyone who can use digital hardware knows how to 
change a circuit design, or a chip design, but anyone who has a PC has the equipment needed to do so. 
Thus far, hardware is parallel to software, but next comes the big difference. 

You can't build and run a circuit design or a chip design in your computer. Constructing a big circuit is 
a lot of painstaking work, and that's once you have the circuit board. Fabricating a chip is not feasible 
for individuals today; only mass production can make them cheap enough. With today's hardware 
technology, users can't download and run a modified version of a widely used digital hardware design, 
as they could run a modified version of a widely used program. Thus, the four freedoms don't give 
users today collective control over a hardware design as they give users collective control over a 
program. That's where the reasoning showing that all software must be free fails to apply to today's 
hardware technology. 

In 1983 there was no free operating system, but it was clear that if we had one, we could immediately 
use it and get software freedom. All that was missing was the code for one. 

In 2014, if we had a free design for a CPU chip suitable for a PC, mass-produced chips made from that 
design would not give us the same freedom in the hardware domain. If we're going to buy a product 
mass produced in a factory, this dependence on the factory causes most of the same problems as a 
nonfree design. For free designs to give us hardware freedom, we need future fabrication technology. 

We can envision a future in which our personal fabricators can make chips, and our robots can 
assemble and solder them together with transformers, switches, keys, displays, fans and so on. In that 
future we will all make our own computers (and fabricators and robots), and we will all be able to take 
advantage of modified designs made by those who know hardware. The arguments for rejecting 
nonfree software will then apply to nonfree hardware designs too. 

That future is years away, at least. In the meantime, there is no need to reject hardware with nonfree 
designs on principle. 

We Need Free Digital Hardware Designs 

Although we need not reject digital hardware made from nonfree designs in today's circumstances, we 
need to develop free designs and should use them when feasible. They provide advantages today, and in 
the future they may be the only way to use free software. 

Free hardware designs offer practical advantages. Multiple companies can fabricate one, which reduces 
dependence on a single vendor. Groups can arrange to fabricate them in quantity. Having circuit 
diagrams or HDL code makes it possible to study the design to look for errors or malicious 
functionalities (it is known that the NSA has procured malicious weaknesses in some computing 

60



hardware). Furthermore, free designs can serve as building blocks to design computers and other 
complex devices, whose specs will be published and which will have fewer parts that could be used 
against us. 

Free hardware designs may become usable for some parts of our computers and networks, and for 
embedded systems, before we are able to make entire computers this way. 

Free hardware designs may become essential even before we can fabricate the hardware personally, if 
they become the only way to avoid nonfree software. As common commercial hardware is increasingly 
designed to subjugate users, it becomes increasingly incompatible with free software, because of secret 
specifications and requirements for code to be signed by someone other than you. Cell phone modem 
chips and even some graphics accelerators already require firmware to be signed by the manufacturer. 
Any program in your computer, that someone else is allowed to change but you're not, is an 
instrument of unjust power over you; hardware that imposes that requirement is malicious hardware. 
In the case of cell phone modem chips, all the models now available are malicious. 

Some day, free-design digital hardware may be the only platform that permits running a free system at 
all. Let us aim to have the necessary free digital designs before then, and hope that we have the means to 
fabricate them cheaply enough for all users. 

If you design hardware, please make your designs free. If you use hardware, please join in urging and 
pressuring companies to make hardware designs free. 

Levels of Design 

Software has levels of implementation; a package might include libraries, commands and scripts, for 
instance. But these levels don't make a significant difference for software freedom because it is feasible 
to make all the levels free. Designing components of a program is the same sort of work as designing 
the code that combines them; likewise, building the components from source is the same sort of 
operation as building the combined program from source. To make the whole thing free simply 
requires continuing the work until we have done the whole job. 

Therefore, we insist that a program be free at all levels. For a program to qualify as free, every line of the 
source code that composes it must be free, so that you can rebuild the program out of free source code 
alone. 

Physical objects, by contrast, are often built out of components that are designed and build in a 
different kind of factory. For instance, a computer is made from chips, but designing (or fabricating) 
chips is very different from designing (or fabricating) the computer out of chips. 

61



Thus, we need to distinguish levels in the design of a digital product (and maybe some other kinds of 
products). The circuit that connects the chips is one level; each chip's design is another level. In an 
FPGA, the interconnection of primitive cells is one level, while the primitive cells themselves are 
another level. In the ideal future we will want the design be free at all levels. Under present 
circumstances, just making one level free is a significant advance. 

However, if a design at one level combines free and nonfree parts—for example, a “free” HDL circuit 
that incorporates proprietary “soft cores”—we must conclude that the design as a whole is nonfree at 
that level. Likewise for nonfree “wizards” or “macros,” if they specify part of the interconnections of 
chips or programmably connected parts of chips. The free parts may be a step towards the future goal 
of a free design, but reaching that goal entails replacing the nonfree parts. They can never be admissible 
in the free world. 

Licenses and Copyright for Free Hardware Designs 

You make a hardware design free by releasing it under a free license. We recommend using the GNU 
General Public License, version 3 or later. We designed GPL version 3 with a view to such use. 

Copyleft on circuits, and on nondecorative object shapes, doesn't go as far as one might suppose. The 
copyright on these designs only applies to the way the design is drawn or written. Copyleft is a way of 
using copyright law, so its effect carries only as far as copyright law carries. 

For instance, a circuit, as a topology, cannot be copyrighted (and therefore cannot be copylefted). 
Definitions of circuits written in HDL can be copyrighted (and therefore copylefted), but the copyleft 
covers only the details of expression of the HDL code, not the circuit topology it generates. Likewise, a 
drawing or layout of a circuit can be copyrighted, so it can be copylefted, but this only covers the 
drawing or layout, not the circuit topology. Anyone can legally draw the same circuit topology in a 
different-looking way, or write a different HDL definition that produces the same circuit. 

Copyright doesn't cover physical circuits, so when people build instances of the circuit, the design's 
license will have no legal effect on what they do with the devices they have built. 

For drawings of objects, and 3D printer models, copyright doesn't cover making a different drawing of 
the same purely functional object shape. It also doesn't cover the functional physical objects made 
from the drawing. As far as copyright is concerned, everyone is free to make them and use them (and 
that's a freedom we need very much). In the US, copyright does not cover the functional aspects that 
the design describes, but does cover decorative aspects . When one object has decorative aspects and 85

functional aspects, you get into tricky ground [2]. 

62

https://www.copyright.gov/title17/92chap13.html#1301


All this may be true in your country as well, or it may not. Before producing objects commercially or in 
quantity, you should consult a local lawyer. Copyright is not the only issue you need to be concerned 
with. You might be attacked using patents, most likely held by entities that had nothing to do with 
making the design you're using, and there may be other legal issues as well. 

Keep in mind that copyright law and patent law are totally different. It is a mistake to suppose that they 
have anything in common. This is why the term “intellectual property ” is pure confusion and should 86

be totally rejected. 

Promoting Free Hardware Designs Through Repositories 

The most effective way to push for published hardware designs to be free is through rules in the 
repositories where they are published. Repository operators should place the freedom of the people 
who will use the designs above the preferences of people who make the designs. This means requiring 
designs of useful objects to be free, as a condition for posting them. 

For decorative objects, that argument does not apply, so we don't have to insist they must be free. 
However, we should insist that they be sharable. Thus, a repository that handles both decorative object 
models and functional ones should have an appropriate license policy for each category. 

For digital designs, I suggest that the repository insist on GNU GPL v3-or-later, Apache 2.0, or CC0. 
For functional 3D designs, the repository should ask the design's author to choose one of four licenses: 
GNU GPL v3-or-later, Apache 2.0, CC BY-SA, CC BY or CC0. For decorative designs, it should 
suggest GNU GPL v3-or-later, Apache 2.0, CC0, or any of the CC licenses. 

The repository should require all designs to be published as source code, and source code in secret 
formats usable only by proprietary design programs is not really adequate. For a 3D model, the STL 
format  is not the preferred format for changing the design and thus is not source code, so the 87

repository should not accept it, except perhaps accompanying real source code. 

There is no reason to choose one single format for the source code of hardware designs, but source 
formats that cannot yet be handled with free software should be accepted reluctantly at best. 

Free Hardware Designs and Warranties 

In general, the authors of free hardware designs have no moral obligation to offer a warranty to those 
that fabricate the design. This is a different issue from the sale of physical hardware, which ought to 
come with a warranty from the seller and/or the manufacturer. 

63

https://www.gnu.org/philosophy/not-ipr.html
https://en.wikipedia.org/wiki/STL_%28file_format%29
https://en.wikipedia.org/wiki/STL_%28file_format%29


Conclusion 

We already have suitable licenses to make our hardware designs free. What we need is to recognize as a 
community that this is what we should do and to insist on free designs when we fabricate objects 
ourselves. 

Footnotes 

1. As used here, “digital hardware” includes hardware with some analog circuits and components 
in addition to digital ones. 

2. An article by Public Knowledge gives useful information about this complexity , for the US, 88

though it falls into the common mistake of using the bogus concept of “intellectual property” 
and the propaganda term “protection .” 89

- END OF CHAPTER 

64

https://web.archive.org/web/20211203021432/https://www.publicknowledge.org/assets/uploads/documents/3_Steps_for_Licensing_Your_3D_Printed_Stuff.pdf
https://www.gnu.org/philosophy/words-to-avoid.html#Protection


Chapter XVI: What Does It Mean for Your 
Computer to Be Loyal? 

by Richard Stallman 

We say that running free software on your computer means that its operation is under your 
control. Implicitly this presupposes that your computer will do what your programs tell it to do, 
and no more. In other words, that your computer will be loyal to you. 

In 1990 we took that for granted; nowadays, many computers are designed to be disloyal to their 
users. It has become necessary to spell out what it means for your computer to be a loyal 
platform that obeys your decisions, which you express by telling it to run certain programs. 

Our tentative definition consists of these principles. 

Installability 

Any software that can be replaced by someone else, the user must be empowered to replace. 

Thus, if the computer requires a password or some other secret in order to replace some of the 
software in it, whoever sells you the computer must tell you that secret as well. 

Neutrality towards software 

The computer will run, without prejudice, whatever software you install in it, and let that 
software do whatever its code says to do. 

A feature to check for signatures on the programs that run is compatible with this principle 
provided the signature checking is fully under the user's control. When that is so, the feature 
helps implement the user's decisions about which programs to run, rather than thwarting the 
user's decisions. By contrast, signature checking that is not fully under the user's control violates 
this principle. 

Neutrality towards protocols 

The computer will communicate, without prejudice, through whatever protocol your installed 
software implements, with whatever users and whatever other networked computers you direct it 
to communicate with. 

65

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-software-even-more-important.html
https://www.gnu.org/philosophy/free-software-even-more-important.html


This means that computer does not impose one particular service rather than another, or one 
protocol rather than another. It does not require the user to get anyone else's permission to 
communicate via a certain protocol. 

Neutrality towards implementations 

When the computer communicates using any given protocol, it will support doing so, without 
prejudice, via whatever code you choose (assuming the code implements the intended protocol), 
and it will do nothing to help any other part of the Internet to distinguish which code you are 
using or what changes you may have made in it, or to discriminate based on your choice. 

This entails that the computer rejects remote attestation, that is, that it does not permit other 
computers to determine over the network whether your computer is running one particular 
software load. Remote attestation gives web sites the power to compel you to connect to them 
only through an application with DRM that you can't break, denying you effective control over 
the software you use to communicate with them. 

We can comprehend remote attestation as a general scheme to allow any web site to impose 
tivoization or “lockdown” on the local software you connect to it with. Simple tivoization of a 
program bars modified versions from functioning properly; that makes the program nonfree. 
Remote attestation by web sites bars modified versions from working with those sites that use it, 
which makes the program effectively nonfree when using those sites. If a computer allows web 
sites to bar you from using a modified program with them, it is loyal to them, not to you. 

Neutrality towards data communicated 

When the computer receives data using whatever protocol, it will not limit what the program can 
do with the data received through that communication. 

Any hardware-level DRM violates this principle. For instance, the hardware must not deliver 
video streams encrypted such that only the monitor can decrypt them. 

Debugability 

The computer always permits you to analyze the operation of a program that is running. 

Completeness 

The principles above apply to all the computer's software interfaces and all communication the 
computer does. The computer must not have any disloyal programmable facility or do any 
disloyal communication. 

66



For instance, the AMT functionality in recent Intel processors runs nonfree software that can talk 
to Intel remotely. Unless disabled, this makes the system disloyal. 

For a computer to be fully at your service, it should come with documentation of all the 
interfaces intended for software running in the computer to use to control the computer. A 
documentation gap as such doesn't mean the computer is actively disloyal, but does mean there 
are some aspect of it that are not at your service. Depending on what that aspect does, this might 
or might not be a real problem. 

We ask readers to send criticisms and suggestions about this definition to <computer-
principles@gnu.org>. 

Loyalty as defined here is the most basic criterion we could think of that is meaningful. It does 
not require that all the software in the computer be free. However, the presence of nonfree 
software in the computer is an obstacle to verifying that the computer is loyal, or making sure 
it remains so. 

History 

Here is the list of substantive changes in this page. 

• Version 1.6: Add installability requirement. 
• Version 1.5: Full documentation is not a requirement for loyalty. 

- END OF CHAPTER 

67

mailto:computer-principles@gnu.org
mailto:computer-principles@gnu.org
https://www.gnu.org/philosophy/free-software-even-more-important.html
https://www.gnu.org/philosophy/free-software-even-more-important.html
https://web.cvs.savannah.gnu.org/viewvc/www/www/philosophy/loyal-computers.html?r1=1.5&r2=1.6
https://web.cvs.savannah.gnu.org/viewvc/www/www/philosophy/loyal-computers.html?r1=1.4&r2=1.5


Chapter XVII: Network Services Aren't Free or 
Nonfree; They Raise Other Issues 

by Richard Stallman 

For programs, we make a distinction between free and nonfree (proprietary). More precisely, this 
distinction applies to a program that you have a copy of: either you have the four freedoms for your 
copy or you don't. If you don't, that program does a specific kind of injustice to you, simply because it 
is nonfree. 

The copyright holders of a nonfree program can cure that injustice in a simple, clear way: release the 
same source code under a free software license. Convincing them to do this may be difficult, but the 
action itself is straightforward. 

An activity (such as a service) doesn't exist in the form of copies, so it's not possible for a user to have a 
copy of it, let alone make more copies. Lacking a copy to modify, the user can't modify it either. As a 
result, the four freedoms that define free software don't make sense for services. It is meaningless to say 
that the service is “nonfree,” or that it is “free.” That distinction makes no sense, for services. 

That does not mean that the service treats users justly. Quite the contrary—many services do wrong to 
their users, in various ways, and we call them “dis-services”—but there is no simple universal fix for 
this, comparable to that for a nonfree program (to release it as free software so users can run and 
control their copies and their versions). 

To use a culinary analogy, my way of cooking can't be a copy of your way of cooking, not even if I 
learned to cook by watching you. I might have and use a copy of the recipe you use to do your cooking, 
because a recipe, like a program, is a work and exists in copies, but your recipe is not the same as your 
way of cooking. (And neither of those is the same as the food produced by your cooking.) 

With today's technology, services are often implemented by running programs on computers, but that 
is not the only way to implement them. (In fact, there are network services that are implemented by 
asking human beings to enter responses to questions.) In any case, the implementation is not visible to 
users of the service, so it has no direct effect on them. 

A network service can raise issues of free vs nonfree software for its users through the client software 
needed to use it. If the service requires using a nonfree client program, use of the service requires ceding 
your freedom to that program. With many web services, the nonfree software is JavaScript code silently 
installed in the user's browser. The GNU LibreJS program makes it easier to refuse to run this nonfree 
JavaScript code. But the issue of the client software is logically separate from the service as such. 

68

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/javascript-trap.html
https://www.gnu.org/software/librejs


There is one case where a service is directly comparable to a program: when using the service is 
equivalent to having a copy of a hypothetical program and running it yourself. In this case, we call it 
Service as a Software Substitute, or SaaSS (we coined that to be less vague and general than “Software as 
a Service”), and such a service is always a bad thing. The job it does is the users' own computing, and 
the users ought to have full control over that. The way for users to have control over their own 
computing is to do it by running their own copies of a free program. Using someone else's server to do 
that computing implies losing control of it. 

SaaSS is equivalent to using a nonfree program with surveillance features and a universal back door, so 
you should reject it and replace it with a free program that does the same job. 

However, most services' principal functions are communicating or publishing information; they are 
nothing like running any program yourself, so they are not SaaSS. They could not be replaced by your 
copy of a program, either; a program running in your own computers, used solely by you and isolated 
from others, is not communicating with anyone else. 

A non-SaaSS service can mistreat users by doing something specific and unjust to the user. For 
instance, it could misuse the data users send it, or collect too much data (surveillance). It could be 
designed to mislead or cheat users (for instance, with “dark patterns”). It could impose antisocial or 
unjust usage conditions. The Franklin Street Statement made a stab at addressing these issues, but we 
don't have full understanding of them as yet. What's clear is that the issues about a service are different 
from the issues about a program. Thus, for clarity's sake, it is better not to apply the terms “free” and 
“nonfree” to a service. 

Let's suppose a service is implemented using software: the server operator has copies of many 
programs, and runs them to implement the service. These copies may be free software or not. If the 
operator developed them and uses them without distributing copies, they are free in a trivial sense since 
every user (there's only one) has the four freedoms. 

If some of them are nonfree, that usually doesn't directly affect users of the service. They are not 
running those programs; the service operator is running them. In a special situation, these programs 
can indirectly affect the users of the service: if the service holds private information, users might be 
concerned that nonfree programs on the server might have back doors allowing someone else to see 
their data. In effect, nonfree programs on the server require users to trust those programs' developers as 
well as the service operator. How significant this is in practice depends on the details, including what 
jobs the nonfree programs do. 

However, the one party that is certainly mistreated by the nonfree programs implementing the service 
is the server operator herself. We don't condemn the server operator for being at the mercy of nonfree 
software, and we certainly don't boycott her for this. Rather, we are concerned for her freedom, as with 

69

https://www.gnu.org/philosophy/who-does-that-server-really-serve.html
https://web.archive.org/web/20090124084811/http://autonomo.us/2008/07/franklin-street-statement/


any user of nonfree software. Given an opportunity, we try to explain how it curtails her freedom, 
hoping she will switch to free software. 

Conversely, if the service operator runs GNU/Linux or other free software, that's not a virtue that 
affects you, but rather a benefit for her. We don't praise or thank her for this; rather we felicitate her for 
making the wise choice. 

If she has developed some software for the service, and released it as free software, that's the point at 
which we have a reason to thank her. We suggest releasing these programs under the GNU Affero GPL, 
since evidently they are useful on servers. 

Why the Affero GPL?  90

Thus, we don't have a rule that free systems shouldn't use (or shouldn't depend on) services (or sites) 
implemented with nonfree software. However, they should not depend on, suggest or encourage use of 
services which are SaaSS; use of SaaSS needs to be replaced by use of free software. All else being equal, 
it is good to favor those service providers who contribute to the community by releasing useful free 
software, and good to favor peer-to-peer communication over server-based centralized communication, 
for activities that don't inherently require a central hub. 

- END OF CHAPTER 

70

https://www.gnu.org/licenses/license-recommendations.html
https://www.gnu.org/licenses/why-affero-gpl.html


Chapter XVIII: Regarding Gnutella 

“Gnutella” is, at present, the name for a protocol for distributed file sharing, mostly used for music 
files. The name also sometimes refers to the network itself, as well as the original Gnutella software. 
The situation is quite confusing. For more on Gnutella's origin and history, please refer to the 
Wikipedia article  on the subject. 91

In any case, the name was originally a word play on “GNU” (the original developers planned to release 
their code under the GNU GPL, and may have had in mind contributing it to the GNU project) and 
“Nutella” (a candy bar that the original developers enjoyed). However, neither the original software 
nor any of the related current projects are official GNU packages . We have asked that the Gnutella 92

developers change the name to avoid confusion; perhaps that will happen in the future. 

There are a number of free software programs that implement the Gnutella protocol, such as Gtk-
Gnutella , Mutella , and Gnucleus . Please note, however, that none of these programs are officially 93 94 95

GNU software either. GNU has its own peer-to-peer networking program, GNUnet , whose 96

documentation includes a comparison of the protocols . 97

The Free Software Foundation is concerned with the freedom to copy and change software; music is 
outside our scope. But there is a partial similarity in the ethical issues of copying software and copying 
recordings of music. Some articles in the philosophy  directory relate to the issue of copying for things 98

other than software. Some of the other people's articles  we have links to are also relevant. 99

No matter what sort of published information is being shared, we urge people to reject the assumption 
that some person or company has a natural right to prohibit sharing and dictate exactly how the public 
can use it. Even the US legal system nominally rejects  that anti-social idea. 100

- END OF CHAPTER 

71

http://en.wikipedia.org/wiki/Gnutella
https://www.gnu.org/philosophy/categories.html#GNUsoftware
https://sourceforge.net/projects/gtk-gnutella/
https://sourceforge.net/projects/gtk-gnutella/
https://sourceforge.net/projects/mutella/
https://sourceforge.net/projects/gnucleus/
https://www.gnu.org/philosophy/categories.html#GNUsoftware
https://www.gnu.org/software/gnunet/
https://web.archive.org/web/20180616130316/https://gnunet.org/compare
https://www.gnu.org/philosophy/essays-and-articles.html#Laws
https://www.gnu.org/philosophy/third-party-ideas.html
https://www.gnu.org/philosophy/reevaluating-copyright.html


Chapter XIX: When Free Software Depends on 
Nonfree 

by Richard Stallman 

When a program is free software (free as in freedom), that means it gives users the four freedoms, so 
that they control what the program does. In most cases, that is sufficient for the program's distribution 
to be ethical; but not always. There are additional problems that can arise in specific circumstances. 
This article describes a subtle problem, where upgrading the free program requires using a nonfree 
program. 

If the free program's use depends unavoidably on another program which is nonfree, we say that the 
free program is “trapped.” Its code is free software, and you may be able to copy pieces of its code into 
other free programs with good, ethical results. But you shouldn't run the trapped program, because 
that entails surrendering your freedom to the other nonfree program. 

Someone who upholds the principles of free software would not knowingly make a program that is 
trapped. However, many free programs are developed by people or companies that don't particularly 
support these principles, or don't understand the problem. 

Dependence on a nonfree program can take various forms. The most basic form is when the 
programming language used has no free implementation. The first programs I wrote for the GNU 
system in the 1980s, including GNU Emacs, GDB and GNU Make, had to be compiled with AT&T's 
nonfree C compiler, because there was no free C compiler until I wrote GCC. Fortunately, this kind of 
problem is mostly a thing of the past; we now have free compilers and platforms for just about all the 
languages anyone uses for writing free software. 

We can release the program from this kind of trap by translating it to another language, or by releasing 
a free implementation of the language it's written in. Thus, when a full free Java implementation 
became available, that released all the free Java programs from the Java Trap . 101

This kind of dependence is conceptually simple because it stems from the situation at one given instant 
in time. At time T, free program P won't run without nonfree programming platform Q. To borrow a 
term from linguistics, this relationship is “synchronic.” 

More recently, we have seen another kind of dependence in database programs, where you can build 
and run any given version of the program in the free world, but upgrading from version N to version 
N+1 requires a nonfree program. 

72

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/java-trap.html


This happens because the internal format of the database changes from version N to version N+1. If 
you have been seriously using version N, you probably have a large existing database in the version N 
format. To upgrade to version N+1 of the database software, you need to reformat that database. 

If the way you are supposed to do this is by running a proprietary database reformat program, or using 
the developer's service which is SaaSS (Service as a Software Substitute), the database software is 
trapped—but in a more subtle way. Any single version of the database program can be used without 
nonfree software or SaaSS. The problem arises when you try to keep using the program for the long 
term, which entails upgrading it from time to time; you can't use it this way without some nonfree 
software or equivalent. This database program is trapped across time—we could call it “diachronically 
trapped,” borrowing another term from linguistics. 

For example, the program OpenERP (since renamed “Odoo”), though free, is diachronically trapped. 
GNU Health , our free package for running a medical clinic, initially used OpenERP. In 2011, GNU 102

Health developer Luis Falcón discovered that upgrading to the next version of OpenERP required 
sending the database (full of patients' medical data) to OpenERP's server for reformatting. This is 
SaaSS: it requires the user of GNU Health (a clinic) to entrust its own computing and its data to the 
company developer of OpenERP. Rather than bow down, Falcón rewrote GNU Health to use 
Tryton  instead. 103

Using SaaSS is inherently equivalent to running a proprietary program with snooping functionality 
and a universal back door. The service could keep a copy of the databases that users reformat. Even if 
we can trust the company that runs the service never to intentionally show any form of the data to 
anyone, we can't be sure that it won't be accessed by the intelligence agencies of various countries  or 104

security-breaking crackers (please don't call them “hackers” ). 105

When a program is diachronically trapped, releasing it from the trap requires more than a one-time job 
of programming. Rather, the job has to be done continually, each time there is a change in the data 
format. Launching a project with a long-term commitment to continue doing this is not easy. It may 
be easier to pressure the company to stop trying to trap users—by rejecting the trapped program until 
it does so. Given how difficult it is to free the program, you had better stay away from it. 

It is possible to try out a diachronically trapped free program without nonfree software, but if you're 
going to do more than dabble, you must steer clear of really using it. Both businesses and individuals 
will find fine free alternatives that don't have such a problem; all it takes to avoid the trap is to recognize 
it. 

- END OF CHAPTER 

73

https://www.gnu.org/philosophy/who-does-that-server-really-serve.html
https://www.gnu.org/software/health/
https://www.tryton.org/
https://www.gnu.org/philosophy/surveillance-vs-democracy.html
https://stallman.org/articles/on-hacking.html


Chapter XX: Is It Ever a Good Thing to Use a 
Nonfree Program? 

by Richard Stallman 

The question here is, is it ever a good thing to use a nonfree program? Our conclusion is that it is 
usually a bad thing, harmful to yourself and in some cases to others. 

If you run a nonfree program on your computer, it denies your freedom; the immediate wrong is 
directed at you [1]. 

That does not mean you're an “evildoer” or “sinner” for running a nonfree program. When the harm 
you're doing is mainly to yourself, we hope you will stop, for your own sake. 

Sometimes you may face great pressure to run a nonfree program; we don't say you must defy that 
pressure at all costs (though it is inspiring when someone does that), but we do urge you to look for 
occasions to where you can refuse, even in small ways . 106

If you recommend that others run the nonfree program, or lead them to do so, you're leading them to 
give up their freedom. Thus, we have a responsibility not to lead or encourage others to run nonfree 
software. Where the program uses a secret protocol for communication, as in the case of Skype, your 
own use of it pressures others to use it too, so it is especially important to avoid any use of these 
programs. 

But there is one special case where using some nonfree software, and even urging others to use it, can 
be a positive thing. That's when the use of the nonfree software aims directly at putting an end to the 
use of that very same nonfree software [2]. 

In the past 

In 1983 I decided to develop the GNU operating system, as a free replacement for Unix. The feasible 
way to do it was to write and test the components one by one on Unix. But was it legitimate to use 
Unix for this? And was it legitimate to ask others to use Unix for this, given that Unix was proprietary 
software? (Of course, if it had not been proprietary, it would not have required replacing.) 

The conclusion I reached was that using Unix to put an end to the use of Unix was legitimate for me to 
suggest to other developers. I likened it to participating in small ways in some evil activity, such as a 
criminal gang or a dishonest political campaign, in order to expose it and shut it down. While 
participating in the activity is wrong in itself, shutting it down excuses minor peripheral participation, 

74

https://www.gnu.org/philosophy/saying-no-even-once.html
https://www.gnu.org/philosophy/saying-no-even-once.html


comparable to merely using Unix. This argument would not justify being a ringleader, but I was only 
considering using Unix, not going to work for its development team. 

The job of replacing Unix was completed when the last essential component was replaced by Linux, 
the kernel started by Linus Torvalds in 1991. We still add to the GNU/Linux system, but that doesn't 
require using Unix, so it isn't a reason for using Unix—not any more. Thus, whenever you're using a 
nonfree program for this sort of reason, you should reconsider from time to time whether the need still 
exists. 

Nowadays 

However, there are other nonfree programs we still need to replace, and the analogous question often 
arises. Should you run the nonfree driver for a peripheral to help you develop a free replacement driver? 
(More precisely, is it ethical for us to suggest that you do so?) Yes, by all means. Is it ok to run the 
nonfree JavaScript on a web site in order to file complaint asking the webmasters to free that JavaScript 
code, or make the site work without it? Definitely—but other than that, you should have LibreJS block 
it for you. 

But this justification won't stretch any further. People that develop nonfree software, even software 
with malicious functionalities, often try to excuse this on the grounds that they fund some 
development of free software. However, a business that is basically wrong can't be legitimized by 
spending some of the profits on a worthy cause. For instance, some (not all) of the activities of the 
Gates Foundation are laudable, but they don't excuse Bill Gates's career, or Microsoft. If the business 
works directly against the worthy cause it tries to legitimize itself with, that is a self-contradiction and it 
undermines the cause. 

Even using a nonfree program to develop free software in general is better to avoid, and not suggest to 
others. For instance, we should not ask people to run Windows or MacOS in order to make free 
applications run on them. As developer of Emacs and GCC, I accepted changes to make them support 
nonfree systems such as VMS, Windows and MacOS. I had no reason to reject that code, even though 
people had run nonfree systems to write it. Their use of unjust systems was not at my request or 
suggestion; rather, they were already using them before starting to write changes for GNU. They also 
did the packaging of releases for those systems. 

The “developing its own replacement” exception is valid within its limits, and crucial for the progress 
of free software, but we must resist stretching it any further lest it turn into an all-purpose excuse for 
any profitable activity with nonfree software. 

75

https://www.gnu.org/philosophy/javascript-trap.html
https://www.gnu.org/software/librejs/


Footnotes 

1. Using the nonfree program can have unfortunate indirect effects, such as rewarding the 
perpetrator and encouraging more use of that program. This is a further reason to shun use of 
nonfree programs. 
Most proprietary programs come with an End User License Agreement that hardly anyone 
reads. Tucked away in it, in most cases, is an unethical commitment to behave like an 
uncooperative, bad neighbor. It claims you promised not to distribute copies to others, or even 
lend someone a copy. 
To carry out such a commitment is more wrong than to break it. No matter what legalistic 
arguments they might make, the developers can hardly claim their shady trick gives users a 
moral obligation to be uncooperative. 
However, we think that the truly moral path is to carefully reject such agreements. 

2. Occasionally it is necessary to use and even upgrade a nonfree system on a machine in order to 
install a free system to replace it on that machine. This is not exactly the same issue, but the 
same arguments apply: it is legitimate to recommend running some nonfree software 
momentarily in order to remove it. 

- END OF CHAPTER 

76



Chapter XXI: The Free Software Movement and 
UDI 

by Richard Stallman 

A project called UDI (Uniform Driver Interface) aims to define a single interface between operating 
system kernels and device drivers. What should the free software movement make of this idea? 

If we imagine a number of operating systems and hardware developers, all cooperating on an equal 
footing, UDI (if technically feasible) would be a very good idea. It would permit us to develop just one 
driver for any given hardware device, and then all share it. It would enable a higher level of cooperation. 

When we apply the idea to the actual world, which contains both free software developers seeking 
cooperation, and proprietary software developers seeking domination, the consequences are very 
different. No way of using UDI can benefit the free software movement. If it does anything, it will 
divide and weaken us. 

If Linux supported UDI, and if we started designing new drivers to communicate with Linux through 
UDI, what would the consequences be? 

• People could run free GPL-covered Linux drivers with Windows systems.This would help only 
Windows users; it would do nothing for us users of free operating systems. It would not directly 
hurt us, either; but the developers of GPL-covered free drivers could be discouraged to see them 
used in this way, and that would be very bad. It can also be a violation of the GNU GPL to link 
the drivers into a proprietary kernel. To increase the temptation to do so is asking for trouble. 

• People could run nonfree Windows drivers on GNU/Linux systems.This would not directly 
affect the range of hardware supported by free software. But indirectly it would tend to decrease 
the range, by offering a temptation to the millions of GNU/Linux users who have not learned to 
insist on freedom for its own sake. To the extent that the community began to accept the 
temptation, we would be moving to using nonfree drivers instead of writing free ones. 
UDI would not in itself obstruct development of free drivers. So if enough of us rejected the 
temptation, we could still develop free drivers despite UDI, just as we do without UDI. 
But why encourage the community to be weaker than it needs to be? Why make unnecessary 
difficulties for the future of free software? Since UDI does no good for us, it is better to reject 
UDI. 

Given these consequences, it is no surprise that Intel, a supporter of UDI, has started to “look to the 
Linux community for help with UDI.” How does a rich and self-seeking company approach a 

77

https://www.gnu.org/gnu/linux-and-gnu.html


cooperating community? By asking for a handout, of course. They have nothing to lose by asking, and 
we might be caught off guard and say yes. 

Cooperation with UDI is not out of the question. We should not label UDI, Intel, or anyone, as a 
Great Satan. But before we participate in any proposed deal, we must judge it carefully, to make sure it 
is advantageous for the free software community, not just for proprietary system developers. On this 
particular issue, that means requiring that cooperation take us a step further along a path that leads to 
the ultimate goal for free kernels and drivers: supporting all important hardware with free drivers. 

One way to make a deal a good one could be by modifying the UDI project itself. Eric Raymond has 
proposed that UDI compliance could require that the driver be free software. That would be ideal, but 
other alternatives could also work. Just requiring source for the driver to be published, and not a trade 
secret, could do the job—because even if that driver is not free, it would at least tell us what we need to 
know to write a free driver. 

Intel could also do something outside of UDI to help the free software community solve this problem. 
For example, there may be some sort of certification that hardware developers seek, that Intel plays a 
role in granting. If so, Intel could agree to make certification more difficult if the hardware specs are 
secret. That might not be a complete solution to the problem, but it could help quite a bit. 

One difficulty with any deal with Intel about UDI is that we would do our part for Intel at the 
beginning, but Intel's payback would extend over a long time. In effect, we would be extending credit 
to Intel. But would Intel continue to repay its loan? Probably yes, if we get it in writing and there are 
no loopholes; otherwise, we can't count on it. Corporations are notoriously untrustworthy; the people 
we are dealing with may have integrity, but they could be overruled from above, or even replaced at any 
time with different people. Even a CEO who owns most of the stock can be replaced through a buy-
out. When making a deal with a corporation, always get a binding commitment in writing. 

It does not seem likely that Intel would offer a deal that gives us what we need. In fact, UDI seems 
designed to make it easier to keep specifications secret. 

Still, there is no harm in keeping the door unlocked, as long as we are careful about who we let in. 

- END OF CHAPTER 

78



Chapter XXII: Why Open Source Misses the Point 
of Free Software 

by Richard Stallman 

The terms “free software” and “open source” stand for almost the same range of programs. However, 
they say deeply different things about those programs, based on different values. The free software 
movement campaigns for freedom for the users of computing; it is a movement for freedom and 
justice. By contrast, the open source idea values mainly practical advantage and does not campaign for 
principles. This is why we do not agree with open source, and do not use that term. 

When we call software “free,” we mean that it respects the users' essential freedoms: the freedom to run 
it, to study and change it, and to redistribute copies with or without changes. This is a matter of 
freedom, not price, so think of “free speech,” not “free beer.” 

These freedoms are vitally important. They are essential, not just for the individual users' sake, but for 
society as a whole because they promote social solidarity—that is, sharing and cooperation. They 
become even more important as our culture and life activities are increasingly digitized. In a world of 
digital sounds, images, and words, free software becomes increasingly essential for freedom in general. 

Tens of millions of people around the world now use free software; the public schools of some regions 
of India and Spain now teach all students to use the free GNU/Linux operating system. Most of these 
users, however, have never heard of the ethical reasons for which we developed this system and built the 
free software community, because nowadays this system and community are more often spoken of as 
“open source,” attributing them to a different philosophy in which these freedoms are hardly 
mentioned. 

The free software movement has campaigned for computer users' freedom since 1983. In 1984 we 
launched the development of the free operating system GNU, so that we could avoid the nonfree 
operating systems that deny freedom to their users. During the 1980s, we developed most of the 
essential components of the system and designed the GNU General Public License (GNU GPL) to 
release them under—a license designed specifically to protect freedom for all users of a program. 

Not all of the users and developers of free software agreed with the goals of the free software 
movement. In 1998, a part of the free software community splintered off and began campaigning in 
the name of “open source.” The term was originally proposed to avoid a possible misunderstanding of 
the term “free software,” but it soon became associated with philosophical views quite different from 
those of the free software movement. 

79

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/licenses/gpl.html


Some of the supporters of open source considered the term a “marketing campaign for free software,” 
which would appeal to business executives by highlighting the software's practical benefits, while not 
raising issues of right and wrong that they might not like to hear. Other supporters flatly rejected the 
free software movement's ethical and social values. Whichever their views, when campaigning for open 
source, they neither cited nor advocated those values. The term “open source” quickly became 
associated with ideas and arguments based only on practical values, such as making or having powerful, 
reliable software. Most of the supporters of open source have come to it since then, and they make the 
same association. Most discussion of “open source” pays no attention to right and wrong, only to 
popularity and success; here's a typical example . A minority of supporters of open source do 107

nowadays say freedom is part of the issue, but they are not very visible among the many that don't. 

The two now describe almost the same category of software, but they stand for views based on 
fundamentally different values. For the free software movement, free software is an ethical imperative, 
essential respect for the users' freedom. By contrast, the philosophy of open source considers issues in 
terms of how to make software “better”—in a practical sense only. It says that nonfree software is an 
inferior solution to the practical problem at hand. 

For the free software movement, however, nonfree software is a social problem, and the solution is to 
stop using it and move to free software. 

“Free software.” “Open source.” If it's the same software (or nearly so), does it matter which name you 
use? Yes, because different words convey different ideas. While a free program by any other name would 
give you the same freedom today, establishing freedom in a lasting way depends above all on teaching 
people to value freedom. If you want to help do this, it is essential to speak of “free software.” 

We in the free software movement don't think of the open source camp as an enemy; the enemy is 
proprietary (nonfree) software. But we want people to know we stand for freedom, so we do not accept 
being mislabeled as open source supporters. What we advocate is not “open source,” and what we 
oppose is not “closed source.” To make this clear, we avoid using those terms. 

Practical Differences between Free Software and Open Source 

In practice, open source stands for criteria a little looser than those of free software. As far as we know, 
all existing released free software source code would qualify as open source. Nearly all open source 
software is free software, but there are exceptions. 

First, some open source licenses are too restrictive, so they do not qualify as free licenses. For example, 
Open Watcom is nonfree because its license does not allow making a modified version and using it 
privately. Fortunately, few programs use such licenses. 

80

https://linuxinsider.com/story/Open-Source-Is-Woven-Into-the-Latest-Hottest-Trends-78937.html
https://www.gnu.org/philosophy/free-open-overlap.html


Second, trademark requirements added on top of the code's copyright license can make a program 
nonfree. For instance, the Rust compiler may be nonfree, because the trademark conditions forbid 
selling copies or distributing modified versions, unless you fully remove all uses of the trademark. Just 
what that requires in practice is not clear. 

Third, the criteria for open source are concerned solely with the use of the source code. Indeed, almost 
all the items in the Open Source Definition  are formulated as conditions on the software's source 108

license rather than on what users are free to do. However, people often describe an executable as “open 
source,” because its source code is available that way. That causes confusion in paradoxical situations 
where the source code is open source (and free) but the executable itself is nonfree. 

The trivial case of this paradox is when a program's source code carries a weak free license, one without 
copyleft, but its executables carry additional nonfree conditions. Supposing the executables correspond 
exactly to the released sources—which may or may not be so—users can compile the source code to 
make and distribute free executables. That's why this case is trivial; it is no grave problem. 

The nontrivial case is harmful and important. Many products containing computers check signatures 
on their executable programs to block users from effectively using different executables; only one 
privileged company can make executables that can run in the device and use its full capabilities. We call 
these devices “tyrants,” and the practice is called “tivoization” after the product (Tivo) where we first 
saw it. Even if the executable is made from free source code, and nominally carries a free license, the 
users cannot usefully run modified versions of it, so the executable is de-facto nonfree. 

Many Android products contain nonfree tivoized executables of Linux, even though its source code is 
under GNU GPL version 2. (We designed GNU GPL version 3 to prohibit this practice; too bad 
Linux did not adopt it.) These executables, made from source code that is open source and free, are 
generally spoken of as “open source,” but they are not free software. 

Common Misunderstandings of “Free Software” and “Open Source” 

The term “free software” is prone to misinterpretation: an unintended meaning, “software you can get 
for zero price,” fits the term just as well as the intended meaning, “software which gives the user certain 
freedoms.” We address this problem by publishing the definition of free software, and by saying 
“Think of ‘free speech,’ not ‘free beer.’” This is not a perfect solution; it cannot completely eliminate 
the problem. An unambiguous and correct term would be better, if it didn't present other problems. 

Unfortunately, all the alternatives in English have problems of their own. We've looked at many that 
people have suggested, but none is so clearly “right” that switching to it would be a good idea. (For 
instance, in some contexts the French and Spanish word “libre” works well, but people in India do not 

81

https://opensource.org/osd


recognize it at all.) Every proposed replacement for “free software” has some kind of semantic problem
—and this includes “open source software.” 

The official definition of open source software (which is published by the Open Source Initiative and is 
too long to include here) was derived indirectly from our criteria for free software. It is not the same; it 
is a little looser in some respects. Nonetheless, their definition agrees with our definition in most cases. 

However, the obvious meaning for the expression “open source software” is “You can look at the 
source code.” Indeed, most people seem to misunderstand “open source software” that way. (The clear 
term for that meaning is “source available.”) That criterion is much weaker than the free software 
definition, much weaker also than the official definition of open source. It includes many programs 
that are neither free nor open source. 

Why do people misunderstand it that way? Because that is the natural meaning of the words “open 
source.” But the concept for which the open source advocates sought another name was a variant of 
that of free software. 

Since the obvious meaning for “open source” is not the meaning that its advocates intend, the result is 
that most people misunderstand the term. According to writer Neal Stephenson, “Linux is ‘open 
source’ software meaning, simply, that anyone can get copies of its source code files.” I don't think he 
deliberately sought to reject or dispute the official definition. I think he simply applied the conventions 
of the English language to come up with a meaning for the term. The state of Kansas  published a 109

similar definition: “Make use of open-source software (OSS). OSS is software for which the source 
code is freely and publicly available, though the specific licensing agreements vary as to what one is 
allowed to do with that code.” 

The New York Times ran an article that stretched the meaning of the term  to refer to user beta 110

testing—letting a few users try an early version and give confidential feedback—which proprietary 
software developers have practiced for decades. 

The term has even been stretched to include designs for equipment that are published without a 
patent . Patent-free equipment designs can be laudable contributions to society, but the term “source 111

code” does not pertain to them. 

Open source supporters try to deal with this by pointing to their official definition, but that corrective 
approach is less effective for them than it is for us. The term “free software” has two natural meanings, 
one of which is the intended meaning, so a person who has grasped the idea of “free speech, not free 
beer” will not get it wrong again. But the term “open source” has only one natural meaning, which is 
different from the meaning its supporters intend. So there is no succinct way to explain and justify its 
official definition. That makes for worse confusion. 

82

https://opensource.org/osd
https://web.archive.org/web/20001011193422/http://da.state.ks.us/ITEC/TechArchPt6ver80.pdf
https://www.nytimes.com/external/gigaom/2009/02/07/07gigaom-the-brave-new-world-of-open-source-game-design-37415.html
https://www.theguardian.com/sustainable-business/2015/aug/27/texas-teenager-water-purifier-toxic-e-waste-pollution
https://www.theguardian.com/sustainable-business/2015/aug/27/texas-teenager-water-purifier-toxic-e-waste-pollution


Another misunderstanding of “open source” is the idea that it means “not using the GNU GPL.” This 
tends to accompany another misunderstanding that “free software” means “GPL-covered software.” 
These are both mistaken, since the GNU GPL qualifies as an open source license and most of the open 
source licenses qualify as free software licenses. There are many free software licenses aside from the 
GNU GPL. 

The term “open source” has been further stretched by its application to other activities, such as 
government, education, and science, where there is no such thing as source code, and where criteria for 
software licensing are simply not pertinent. The only thing these activities have in common is that they 
somehow invite people to participate. They stretch the term so far that it only means “participatory” or 
“transparent,” or less than that. At worst, it has become a vacuous buzzword . 112

Different Values Can Lead to Similar Conclusions—but Not Always 

Radical groups in the 1960s had a reputation for factionalism: some organizations split because of 
disagreements on details of strategy, and the two daughter groups treated each other as enemies despite 
having similar basic goals and values. The right wing made much of this and used it to criticize the 
entire left. 

Some try to disparage the free software movement by comparing our disagreement with open source to 
the disagreements of those radical groups. They have it backwards. We disagree with the open source 
camp on the basic goals and values, but their views and ours lead in many cases to the same practical 
behavior—such as developing free software. 

As a result, people from the free software movement and the open source camp often work together on 
practical projects such as software development. It is remarkable that such different philosophical views 
can so often motivate different people to participate in the same projects. Nonetheless, there are 
situations where these fundamentally different views lead to very different actions. 

The idea of open source is that allowing users to change and redistribute the software will make it more 
powerful and reliable. But this is not guaranteed. Developers of proprietary software are not necessarily 
incompetent. Sometimes they produce a program that is powerful and reliable, even though it does not 
respect the users' freedom. Free software activists and open source enthusiasts will react very differently 
to that. 

A pure open source enthusiast, one that is not at all influenced by the ideals of free software, will say, “I 
am surprised you were able to make the program work so well without using our development model, 
but you did. How can I get a copy?” This attitude will reward schemes that take away our freedom, 
leading to its loss. 

83

https://www.gnu.org/licenses/license-list.html
https://www.nytimes.com/2013/03/17/opinion/sunday/morozov-open-and-closed.html


The free software activist will say, “Your program is very attractive, but I value my freedom more. So I 
reject your program. I will get my work done some other way, and support a project to develop a free 
replacement.” If we value our freedom, we can act to maintain and defend it. 

Powerful, Reliable Software Can Be Bad 

The idea that we want software to be powerful and reliable comes from the supposition that the 
software is designed to serve its users. If it is powerful and reliable, that means it serves them better. 

But software can be said to serve its users only if it respects their freedom. What if the software is 
designed to put chains on its users? Then powerfulness means the chains are more constricting, and 
reliability that they are harder to remove. Malicious features, such as spying on the users, restricting the 
users, back doors, and imposed upgrades are common in proprietary software, and some open source 
supporters want to implement them in open source programs. 

Under pressure from the movie and record companies, software for individuals to use is increasingly 
designed specifically to restrict them. This malicious feature is known as Digital Restrictions 
Management (DRM) (see DefectiveByDesign.org) and is the antithesis in spirit of the freedom that 
free software aims to provide. And not just in spirit: since the goal of DRM is to trample your freedom, 
DRM developers try to make it hard, impossible, or even illegal for you to change the software that 
implements the DRM. 

Yet some open source supporters have proposed “open source DRM” software. Their idea is that, by 
publishing the source code of programs designed to restrict your access to encrypted media and by 
allowing others to change it, they will produce more powerful and reliable software for restricting users 
like you. The software would then be delivered to you in devices that do not allow you to change it. 

This software might be open source and use the open source development model, but it won't be free 
software since it won't respect the freedom of the users that actually run it. If the open source 
development model succeeds in making this software more powerful and reliable for restricting you, 
that will make it even worse. 

Fear of Freedom 

The main initial motivation of those who split off the open source camp from the free software 
movement was that the ethical ideas of free software made some people uneasy. That's true: raising 
ethical issues such as freedom, talking about responsibilities as well as convenience, is asking people to 
think about things they might prefer to ignore, such as whether their conduct is ethical. This can 
trigger discomfort, and some people may simply close their minds to it. It does not follow that we 
ought to stop talking about these issues. 

84

https://defectivebydesign.org/


That is, however, what the leaders of open source decided to do. They figured that by keeping quiet 
about ethics and freedom, and talking only about the immediate practical benefits of certain free 
software, they might be able to “sell” the software more effectively to certain users, especially business. 

When open source proponents talk about anything deeper than that, it is usually the idea of making a 
“gift” of source code to humanity. Presenting this as a special good deed, beyond what is morally 
required, presumes that distributing proprietary software without source code is morally legitimate. 

This approach has proved effective, in its own terms. The rhetoric of open source has convinced many 
businesses and individuals to use, and even develop, free software, which has extended our community
—but only at the superficial, practical level. The philosophy of open source, with its purely practical 
values, impedes understanding of the deeper ideas of free software; it brings many people into our 
community, but does not teach them to defend it. That is good, as far as it goes, but it is not enough to 
make freedom secure. Attracting users to free software takes them just part of the way to becoming 
defenders of their own freedom. 

Sooner or later these users will be invited to switch back to proprietary software for some practical 
advantage. Countless companies seek to offer such temptation, some even offering copies gratis. Why 
would users decline? Only if they have learned to value the freedom free software gives them, to value 
freedom in and of itself rather than the technical and practical convenience of specific free software. To 
spread this idea, we have to talk about freedom. A certain amount of the “keep quiet” approach to 
business can be useful for the community, but it is dangerous if it becomes so common that the love of 
freedom comes to seem like an eccentricity. 

That dangerous situation is exactly what we have. Most people involved with free software, especially 
its distributors, say little about freedom—usually because they seek to be “more acceptable to 
business.” Nearly all GNU/Linux operating system distributions add proprietary packages to the basic 
free system, and they invite users to consider this an advantage rather than a flaw. 

Proprietary add-on software and partially nonfree GNU/Linux distributions find fertile ground 
because most of our community does not insist on freedom with its software. This is no coincidence. 
Most GNU/Linux users were introduced to the system through “open source” discussion, which 
doesn't say that freedom is a goal. The practices that don't uphold freedom and the words that don't 
talk about freedom go hand in hand, each promoting the other. To overcome this tendency, we need 
more, not less, talk about freedom. 

“FLOSS” and “FOSS” 

The terms “FLOSS” and “FOSS” are used to be neutral between free software and open source . If 113

neutrality is your goal, “FLOSS” is the better of the two, since it really is neutral. But if you want to 

85

https://www.gnu.org/philosophy/floss-and-foss.html


stand up for freedom, using a neutral term isn't the way. Standing up for freedom entails showing 
people your support for freedom. 

Rivals for Mindshare 

“Free” and “open” are rivals for mindshare. Free software and open source are different ideas but, in 
most people's way of looking at software, they compete for the same conceptual slot. When people 
become habituated to saying and thinking “open source,” that is an obstacle to their grasping the free 
software movement's philosophy and thinking about it. If they have already come to associate us and 
our software with the word “open,” we may need to shock them intellectually before they recognize 
that we stand for something else. Any activity that promotes the word “open” tends to extend the 
curtain that hides the ideas of the free software movement. 

Thus, free software activists are well advised to decline to work on an activity that calls itself “open.” 
Even if the activity is good in and of itself, each contribution you make does a little harm on the side by 
promoting the open source idea. There are plenty of other good activities which call themselves “free” 
or “libre.” Each contribution to those projects does a little extra good on the side. With so many useful 
projects to choose from, why not choose one which does extra good? 

Conclusion 

As the advocates of open source draw new users into our community, we free software activists must 
shoulder the task of bringing the issue of freedom to their attention. We have to say, “It's free software 
and it gives you freedom!”—more and louder than ever. Every time you say “free software” rather than 
“open source,” you help our cause. 

Notes 

• Joe Barr wrote an article called Live and let license  that gives his perspective on this issue. 114

• Lakhani and Wolf's paper on the motivation of free software developers  says that a 115

considerable fraction are motivated by the view that software should be free. This is despite the 
fact that they surveyed the developers on SourceForge, a site that does not support the view 
that this is an ethical issue. 

- END OF CHAPTER 

86

https://web.archive.org/web/20010618050431/itworld.com/AppDev/350/LWD010523vcontrol4/pfindex.html
https://ocw.mit.edu/courses/sloan-school-of-management/15-352-managing-innovation-emerging-trends-spring-2005/readings/lakhaniwolf.pdf


Chapter XXIII: FLOSS and FOSS 

by Richard Stallman 

The two political camps in the free software community are the free software movement and open 
source. The free software movement is a campaign for computer users' freedom; we say that a nonfree 
program is an injustice to its users. The open source camp declines to see the issue as a matter of justice 
to the users, and bases its arguments on practical benefits only. 

To emphasize that “free software” refers to freedom and not to price, we sometimes write or say “free 
(libre) software,” adding the French or Spanish word that means free in the sense of freedom. In some 
contexts, it works to use just “libre software.” 

A researcher studying practices and methods used by developers in the free software community 
decided that these questions were independent of the developers' political views, so he used the term 
“FLOSS,” meaning “Free/Libre and Open Source Software,” to explicitly avoid a preference between 
the two political camps. If you wish to be neutral, this is a good way to do it, since this makes the names 
of the two camps equally prominent. 

Others use the term “FOSS,” which stands for “Free and Open Source Software.” This is meant to 
mean the same thing as “FLOSS,” but it is less clear, since it fails to explain that “free” refers to 
freedom. It also makes “free software” less visible than “open source,” since it presents “open source” 
prominently but splits “free software” apart. 

“Free and Open Source Software” is misleading in another way: it suggests that “free and open source” 
names a single point of view, rather than mentioning two different ones. This conceptualization of the 
field is an obstacle to understanding the fact that free software and open source are different political 
positions that disagree fundamentally. 

Thus, if you want to be neutral between free software and open source, and clear about them, the way 
to achieve that is to say “FLOSS,” not “FOSS.” 

We in the free software movement don't use either of these terms, because we don't want to be neutral 
on the political question. We stand for freedom, and we show it every time—by saying “free” and 
“libre”—or “free (libre).” 

- END OF CHAPTER 

87

https://www.gnu.org/philosophy/free-software-even-more-important.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html


Chapter XXIV: Measures Governments Can Use to 
Promote Free Software 
And why it is their duty to do so 

by Richard Stallman 

This article suggests policies for a strong and firm effort to promote free software within the state, and to 
lead the rest of the country towards software freedom. 

The mission of the state is to organize society for the freedom and well-being of the people. One aspect 
of this mission, in the computing field, is to encourage users to adopt free software: software that 
respects the users' freedom. A proprietary (nonfree) program tramples the freedom of those that use it; 
it is a social problem that the state should work to eradicate. 

The state needs to insist on free software in its own computing for the sake of its computational 
sovereignty (the state's control over its own computing). All users deserve control over their 
computing, but the state has a responsibility to the people to maintain control over the computing it 
does on their behalf. Most government activities now depend on computing, and its control over those 
activities depends on its control over that computing. Losing this control in an agency whose mission is 
critical undermines national security. 

Moving state agencies to free software can also provide secondary benefits, such as saving money and 
encouraging local software support businesses. 

In this text, “state entities” refers to all levels of government, and means public agencies including 
schools, public-private partnerships, largely state-funded activities such as charter schools, and 
“private” corporations controlled by the state or established with special privileges or functions by the 
state. 

Education 

The most important policy concerns education, since that shapes the future of the country: 

• Teach only free software 
Educational activities, or at least those of state entities, must teach only free software (thus, they 
should never lead students to use a nonfree program), and should teach the civic reasons for 
insisting on free software. To teach a nonfree program is to teach dependence, which is contrary 
to the mission of the school. 

88

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html


The State and the Public 

Also crucial are state policies that influence what software individuals and organizations use: 

• Never require nonfree programs 
Laws and public sector practices must be changed so that they never require or pressure 
individuals or organizations to use a nonfree program. They should also discourage 
communication and publication practices that imply such consequences (including Digital 
Restrictions Management ). 116

• Distribute only free software 
Whenever a state entity distributes software to the public, including programs included in or 
specified by its web pages, it must be distributed as free software, and must be capable of running 
on a platform containing exclusively free software. 

• State web sites 
State entity web sites and network services must be designed so that users can use them, without 
disadvantage, by means of free software exclusively. 

• Free formats and protocols 
State entities must use only file formats and communication protocols that are well supported by 
free software, preferably with published specifications. (We do not state this in terms of 
“standards” because it should apply to nonstandardized interfaces as well as standardized ones.) 
For example, they must not distribute audio or video recordings in formats that require Flash or 
nonfree codecs, and public libraries must not distribute works with Digital Restrictions 
Management. 
To support the policy of distributing publications and works in freedom-respecting formats, the 
state must insist that all reports developed for it be delivered in freedom-respecting formats. 

• Untie computers from licenses 
Sale of computers must not require purchase of a proprietary software license. The seller should 
be required by law to offer the purchaser the option of buying the computer without the 
proprietary software and without paying the license fee. 
The imposed payment is a secondary wrong, and should not distract us from the essential 
injustice of proprietary software, the loss of freedom which results from using it. Nonetheless, 
the abuse of forcing users to pay for it gives certain proprietary software developers an additional 
unfair advantage, detrimental to users' freedom. It is proper for the state to prevent this abuse. 

Computational Sovereignty 

Several policies affect the computational sovereignty of the state. State entities must maintain control 
over their computing, not cede control to private hands. These points apply to all computers, 
including smartphones. 

89

https://www.defectivebydesign.org/what_is_drm_digital_restrictions_management
https://www.defectivebydesign.org/what_is_drm_digital_restrictions_management


• Migrate to free software 
State entities must migrate to free software, and must not install, or continue using, any nonfree 
software except under a temporary exception. Only one agency should have the authority to 
grant these temporary exceptions, and only when shown compelling reasons. This agency's goal 
should be to reduce the number of exceptions to zero. 

• Develop free IT solutions 
When a state entity pays for development of a computing solution, the contract must require it 
be delivered as free software, and that it be designed such that one can both run it and develop it 
on a 100%-free environment. All contracts must require this, so that if the developer does not 
comply with these requirements, the work cannot be paid for. 

• Choose computers for free software 
When a state entity buys or leases computers, it must choose among the models that come 
closest, in their class, to being capable of running without any proprietary software. The state 
should maintain, for each class of computers, a list of the models authorized based on this 
criterion. Models available to both the public and the state should be preferred to models 
available only to the state. 

• Negotiate with manufacturers 
The state should negotiate actively with manufacturers to bring about the availability in the 
market (to the state and the public) of suitable hardware products, in all pertinent product areas, 
that require no proprietary software. 

• Unite with other states 
The state should invite other states to negotiate collectively with manufacturers about suitable 
hardware products. Together they will have more clout. 

Computational Sovereignty II 

The computational sovereignty (and security) of the state includes control over the computers that do 
the state's work. This requires avoiding Service as a Software Substitute, unless the service is run by a 
state agency under the same branch of government, as well as other practices that diminish the state 
control over its computing. Therefore, 

• State must control its computers 
Every computer that the state uses must belong to or be leased by the same branch of 
government that uses it, and that branch must not cede to outsiders the right to decide who has 
physical access to the computer, who can do maintenance (hardware or software) on it, or what 
software should be installed in it. If the computer is not portable, then while in use it must be in 
a physical space of which the state is the occupant (either as owner or as tenant). 

90

https://www.gnu.org/philosophy/who-does-that-server-really-serve.html


Influence Development 

State policy affects free and nonfree software development: 

• Encourage free 
The state should encourage developers to create or enhance free software and make it available to 
the public, e.g. by tax breaks and other financial incentive. Contrariwise, no such incentives 
should be granted for development, distribution or use of nonfree software. 

• Don't encourage nonfree 
In particular, proprietary software developers should not be able to “donate” copies to schools 
and claim a tax write-off for the nominal value of the software. Proprietary software is not 
legitimate in a school. 

E-waste 

Freedom should not imply e-waste: 

• Replaceable software 
Many modern computers are designed to make it impossible to replace their preloaded software 
with free software. Thus, the only way to free them is to junk them. This practice is harmful to 
society. 
Therefore, it should be illegal, or at least substantially discouraged through heavy taxation, to 
sell, import or distribute in quantity a new computer (that is, not second-hand) or computer-
based product for which secrecy about hardware interfaces or intentional restrictions prevent 
users from developing, installing and using replacements for any and all of the installed software 
that the manufacturer could upgrade. This would apply, in particular, to any device on which 
“jailbreaking”  is needed to install a different operating system, or in which the interfaces for 117

some peripherals are secret. 

Technological neutrality 

With the measures in this article, the state can recover control over its computing, and lead the 
country's citizens, businesses and organizations towards control over their computing. However, some 
object on the grounds that this would violate the “principle” of technological neutrality. 

The idea of technological neutrality is that the state should not impose arbitrary preferences on 
technical choices. Whether that is a valid principle is disputable, but it is limited in any case to issues 
that are merely technical. The measures advocated here address issues of ethical, social and political 
importance, so they are outside the scope of technological neutrality . Only those who wish to 118

91

https://www.gnu.org/proprietary/proprietary-jails.html
https://www.gnu.org/philosophy/technological-neutrality.html


subjugate a country would suggest that its government be “neutral” about its sovereignty or its citizens' 
freedom. 

- END OF CHAPTER 

92



Chapter XXV: Why Schools Should Exclusively 
Use Free Software 

by Richard Stallman 

Educational activities, including schools of all levels from kindergarten to university, have a moral duty 
to teach only free software. 

All computer users ought to insist on free software: it gives users the freedom to control their own 
computers—with proprietary software, the program does what its owner or developer wants it to do, 
not what the user wants it to do. Free software also gives users the freedom to cooperate with each 
other, to lead an upright life. These reasons apply to schools as they do to everyone. However, the 
purpose of this article is to present the additional reasons that apply specifically to education. 

Free software can save schools money, but this is a secondary benefit. Savings are possible because free 
software gives schools, like other users, the freedom to copy and redistribute the software; the school 
system can give a copy to every school, and each school can install the program in all its computers, 
with no obligation to pay for doing so. 

This benefit is useful, but we firmly refuse to give it first place, because it is shallow compared to the 
important ethical issues at stake. Moving schools to free software is more than a way to make education 
a little “better”: it is a matter of doing good education instead of bad education. So let's consider the 
deeper issues. 

Schools have a social mission: to teach students to be citizens of a strong, capable, independent, 
cooperating and free society. They should promote the use of free software just as they promote 
conservation and voting. By teaching students free software, they can graduate citizens ready to live in a 
free digital society. This will help society as a whole escape from being dominated by 
megacorporations. 

In contrast, to teach a nonfree program is implanting dependence, which goes counter to the schools' 
social mission. Schools should never do this. 

Why, after all, do some proprietary software developers offer gratis copies(1) of their nonfree programs 
to schools? Because they want to use the schools to implant dependence on their products, like tobacco 
companies distributing gratis cigarettes to school children(2). They will not give gratis copies to these 
students once they've graduated, nor to the companies that they go to work for. Once you're 
dependent, you're expected to pay, and future upgrades may be expensive. 

93

https://www.gnu.org/education/education.html
https://www.gnu.org/philosophy/free-software-even-more-important.html


Free software permits students to learn how software works. Some students, natural-born 
programmers, on reaching their teens yearn to learn everything there is to know about their computer 
and its software. They are intensely curious to read the source code of the programs that they use every 
day. 

Proprietary software rejects their thirst for knowledge: it says, “The knowledge you want is a secret—
learning is forbidden!” Proprietary software is the enemy of the spirit of education, so it should not be 
tolerated in a school, except as an object for reverse engineering. 

Free software encourages everyone to learn. The free software community rejects the “priesthood of 
technology”, which keeps the general public in ignorance of how technology works; we encourage 
students of any age and situation to read the source code and learn as much as they want to know. 

Schools that use free software will enable gifted programming students to advance. How do natural-
born programmers learn to be good programmers? They need to read and understand real programs 
that people really use. You learn to write good, clear code by reading lots of code and writing lots of 
code. Only free software permits this. 

How do you learn to write code for large programs? You do that by writing lots of changes in existing 
large programs. Free Software lets you do this; proprietary software forbids this. Any school can offer 
its students the chance to master the craft of programming, but only if it is a free software school. 

The deepest reason for using free software in schools is for moral education. We expect schools to teach 
students basic facts and useful skills, but that is only part of their job. The most fundamental task of 
schools is to teach good citizenship, including the habit of helping others. In the area of computing, 
this means teaching people to share software. Schools, starting from nursery school, should tell their 
students, “If you bring software to school, you must share it with the other students. You must show 
the source code to the class, in case someone wants to learn. Therefore bringing nonfree software to 
class is not permitted, unless it is for reverse-engineering work.” 

Of course, the school must practice what it preaches: it should bring only free software to class (except 
objects for reverse-engineering), and share copies including source code with the students so they can 
copy it, take it home, and redistribute it further. 

Teaching the students to use free software, and to participate in the free software community, is a 
hands-on civics lesson. It also teaches students the role model of public service rather than that of 
tycoons. All levels of school should use free software. 

If you have a relationship with a school —if you are a student, a teacher, an employee, an 
administrator, a donor, or a parent— it's your responsibility to campaign for the school to migrate to 

94



free software. If a private request doesn't achieve the goal, raise the issue publicly in those communities; 
that is the way to make more people aware of the issue and find allies for the campaign. 

1. Warning: a school that accepts such an offer may find subsequent upgrades rather expensive. 
2. RJ Reynolds Tobacco Company was fined $15m in 2002 for handing out free samples of 

cigarettes at events attended by children. See http://www.bbc.co.uk/worldservice/sci_tech/
features/health/tobaccotrial/usa.htm. 

- END OF CHAPTER 

95

http://www.bbc.co.uk/worldservice/sci_tech/features/health/tobaccotrial/usa.htm
http://www.bbc.co.uk/worldservice/sci_tech/features/health/tobaccotrial/usa.htm


Chapter XXVI: Technological Neutrality and Free 
Software 

by Richard Stallman 

Proprietary developers arguing against laws to move towards free software often claim this violates the 
principle of “technological neutrality.” The conclusion is wrong, but where is the error? 

Technological neutrality is the principle that the state should not impose preferences for or against 
specific kinds of technology. For example, there should not be a rule that specifies whether state 
agencies should use solid state memory or magnetic disks, or whether they should use GNU/Linux or 
BSD. Rather, the agency should let bidders propose any acceptable technology as part of their 
solutions, and choose the best/cheapest offer by the usual rules. 

The principle of technological neutrality is valid, but it has limits. Some kinds of technology are 
harmful; they may pollute air or water, encourage antibiotic resistance, abuse their users, abuse the 
workers that make them, or cause massive unemployment. These should be taxed, regulated, 
discouraged, or even banned. 

The principle of technological neutrality applies only to purely technical decisions. It is not “ethical 
neutrality” or “social neutrality”; it does not apply to decisions about ethical and social issues—such as 
the choice between free software and proprietary software. 

For instance, when the state adopts a policy of migrating to free software in order to restore the 
computing sovereignty of the country and lead the people towards freedom and cooperation, this isn't 
a technical preference. This is an ethical, social and political policy, not a technological policy. The state 
is not supposed to be neutral about maintaining the people's freedom or encouraging cooperation. It is 
not supposed to be neutral about maintaining or recovering its sovereignty. 

It is the state's duty to insist that the software in its public agencies respect the computing sovereignty 
of the country, and that the software taught in its schools educate its students in freedom and 
cooperation. The state must insist on free software, exclusively, in public agencies and in education. 
The state has the responsibility to maintain control of its computing, so it must not surrender that 
control to Service as a Software Substitute. In addition, the state must not reveal to companies the 
personal data that it maintains about citizens. 

When no ethical imperatives apply to a certain technical decision, it can be left to the domain of 
technological neutrality. 

96

https://www.gnu.org/philosophy/government-free-software.html
https://www.gnu.org/education/edu-schools.html
https://www.gnu.org/philosophy/who-does-that-server-really-serve.html
https://www.gnu.org/philosophy/surveillance-vs-democracy.html
https://www.gnu.org/philosophy/surveillance-vs-democracy.html


Chapter XXVII: The Moral and the Legal 

by Richard Stallman 

Every legal issue about free/libre software is at root a moral issue. Before we think about the legal level 
of the issue, we need to understand the moral level. 

The legal level is about what current laws require. When we in the free software movement make a legal 
argument, that is what we are arguing about. However, the moral level is what matters most—it is 
where our goals come from. Liberty resides at that level, which is why we also call it “libre” software. 

The two levels are not the same or even parallel. In general, that X is currently lawful says nothing 
about whether X is morally legitimate, and vice versa. We might propose to change some laws to better 
follow some of our moral ideas. 

There is a pervasive tendency, especially in the US, to assume that laws dictate right and wrong. If we in 
the free software movement post articles or letters that discuss only the legal level, readers will tend to 
assume we agree with that assumption—that what we judge by is legality above all, so that if an action 
is lawful we are unable to criticize it. 

Since our overall purpose is to end the lawful but unjust computing practices (nonfree software and 
SaaSS) because we judge morally that they are unjust, we must show we do not define morality as “not 
breaking any laws.” We need to keep reminding the public to pay attention to the deeper level, which is 
the moral level. If, in a communication, we focus on the shallow aspects alone, we miss an opportunity 
to show the public our deeper message. Because some readers are interested only in the legalities, we 
must show we don't consider those to be paramount. 

In some cases, we contend, morality and legality say opposite things. In the US, distributing a program 
that can break DRM is illegal; the companies that implement DRM point to this, and hope you will 
confuse legality with morality. We are careful not to get confused that way. Breaking DRM is morally 
admirable; what's immoral is to implement DRM. 

In anything we publish, and anything we send to strangers (they might redistribute it to the public), we 
have to show that our views about issues are primarily based on the moral level. Even when the 
immediately crucial part is at the legal level, we must show how we judge programs, and laws 
themselves, at the moral level. Thus, when people ask whether a program follows the XYZ law, we can 
say, “We believe it does—and, most importantly, it respects users' freedom.” 

Presenting the two levels in relation to each other is a very good way of showing them both, and also 
showing how they are related. For instance, when speaking for the FSF, it can be useful to say, “Your 
program FOO contains part of the source code of GNU BAR” (a legal issue) “and fails to follow the 

97

https://www.gnu.org/philosophy/who-does-that-server-really-serve.html


GNU GPL rules” (a legal issue), “and that denies other users some of the rights they are entitled to” 
(the deeper moral issue). “To ensure all users of code from GNU BAR fully enjoy the four freedoms for 
it” (the goal at the moral level), “we invoke our copyright to require you to stop distributing the code 
that way” (using legal power as a tool to achieve the moral goal). 

That is not the only way to present them both. In other contexts, not the FSF, you might need to say 
something very different. The main thing is to remember to talk about the moral level often, so readers 
realize it is the deeper and more important of the two levels. 

- END OF CHAPTER 

98

https://www.gnu.org/philosophy/free-sw.html


Chapter XXVIII: Saying No to unjust computing 
even once is help 

by Richard Stallman 

A misunderstanding is circulating that the GNU Project demands you run 100% free software, all the 
time. Anything less (90%?), and we will tell you to get lost—they say. Nothing could be further from 
the truth. 

Our ultimate goal is digital freedom for all, a world without nonfree software. Some of us, who have 
made campaigning for digital freedom our goal, reject all nonfree programs. However, as a practical 
matter, even a little step towards that goal is good. A walk of a thousand miles consists of lots of steps. 
Each time you don't install some nonfree program, or decide not to run it that day, that is a step 
towards your own freedom. Each time you decline to run a nonfree program with others, you show 
them a wise example of long-term thinking. That is a step towards freedom for the world. 

If you're caught in a web of nonfree programs, you're surely looking for a chance to pull a few strands 
off of your body. Each one pulled off is an advance. 

Each time you tell the people in some activity, “I'd rather use Zoom less—please count me out today,” 
you help the free software movement. “I'd like to do this with you, but with Zoom on the other side of 
the scale, I've decided to decline.” If you accepted the nonfree software before, you could say this: “I'd 
like to participate, but the software we are using is not good for us. I've decided I should cut down.” 
Once in a while, you may convince them to use free software instead. At least they will learn that some 
people care about freedom enough to decline participation for freedom's sake. 

If you say no, on one occasion, to conversing with someone or some group via Skype, you have helped. 
If you say no, on one occasion, to conversing via WhatsApp, Facebook, or Slack, you have helped. If 
you say no, on one occasion, to editing something via Google Docs, you have helped. If you say no to 
registering for one meeting in eventbrite.com or meetup.com, you have helped. If you tell one 
organization you won't use its “portal” or app, so you will deal with it by phone, that helps. Of course, 
you help more if you stick to your refusal (with kind firmness, of course) and don't let the others 
change your mind. 

Steps add up. If on another day you decline the nonfree program again, you will have helped again. If 
you say no a few times a week, that adds up over time. When people see you say no, even once, you may 
inspire them to follow your example. 

99

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-software-even-more-important.html


To give help consistently, you can make this refusal a firm practice, but refusing occasionally is still 
help. You will help more if you reject several of the nonfree programs that communities have blindly 
swallowed. Would you ever want to reject them all? There is no need to decide that now. 

So tell someone, “Thanks for inviting me, but Zoom/Skype/WhatsApp/whichever is a freedom-
denying program, and almost surely snoops on its users; please count me out. I want a different kind of 
world, and by declining to use it today I am taking a step towards that world.” 

The FSF recommends freedom-respecting methods  for the sorts of communication that unjust 119

systems do. If one of them would be usable, you could add, “If we use XYZ for this conversation, or 
some other libre software, I could participate.” 

You can take one step. And once you've done it, sooner or later you can do it again. Eventually you may 
find you have changed your practices; if you get used to saying no to some nonfree program, you could 
do it most of the time, maybe even every time. Not only will you have gained an increment of freedom; 
you will have helped your whole community by spreading awareness of the issue. 

- END OF CHAPTER 

100

https://www.fsf.org/blogs/community/better-than-zoom-try-these-free-software-tools-for-staying-in-touch


Chapter XXIX: Motives For Writing Free Software 

Don't make the mistake of supposing that all software development has one simple motive. Here are 
some of the motives we know influence many people to write free software. 

Fun 

For some people, often the best programmers, writing software is the greatest fun, especially when 
there is no boss to tell you what to do. 
Nearly all free software developers share this motive. 

Political idealism 

The desire to build a world of freedom, and help computer users escape from the power of software 
developers. 

To be admired 

If you write a successful, useful free program, the users will admire you. That feels very good. 

Professional reputation 

If you write a successful, useful free program, that will suffice to show you are a good programmer. 

Community 

Being part of a community by collaborating with other people in public free software projects is a 
motive for many programmers. 

Education 

If you write free software, it is often an opportunity to dramatically improve both your technical and 
social skills; if you are a teacher, encouraging your students to take part in an existing free software 
project or organizing them into a free software project may provide an excellent opportunity for them. 

Gratitude 
If you have used the community's free programs for years, and it has been important to your work, you 
feel grateful and indebted to their developers. When you write a program that could be useful to many 
people, that is your chance to pay it forward. 

101



Hatred for Microsoft 

It is a mistake to focus our criticism narrowly on Microsoft. Indeed, Microsoft is evil, since it makes 
nonfree software. Even worse, it is often malware in various ways including DRM. However, many 
other companies do these things, and the nastiest enemy of our freedom nowadays is Apple. 
Nonetheless, it is a fact that many people utterly despise Microsoft, and some contribute to free 
software based on that feeling. 

Money 

A considerable number of people are paid to develop free software or have built businesses around it. 

Wanting a better program to use 

People often work on improvements in programs they use, in order to make them more convenient. 
(Some commentators recognize no motive other than this, but their picture of human nature is too 
narrow.) 
Human nature is complex, and it is quite common for a person to have multiple simultaneous motives 
for a single action. 

Each person is different, and there could be other motives that are missing from this list. If you know 
of other motives not listed here, please send email to <campaigns@gnu.org>. If we think the other 
motives are likely to influence many developers, we will add them to the list. 

- END OF CHAPTER 

102

https://www.gnu.org/philosophy/microsoft.html
https://www.gnu.org/philosophy/proprietary/malware-microsoft.html
https://defectivebydesign.org/
https://www.gnu.org/philosophy/proprietary/malware-apple.html
mailto:campaigns@gnu.org


Chapter XXX: Why Copyleft? 

When it comes to defending everyone's freedom, to lie down and do nothing is an act of 
weakness, not humility. 

In the GNU Project we usually recommend people use copyleft licenses like GNU GPL, rather than 
permissive non-copyleft free software licenses. We don't argue harshly against the non-copyleft licenses
—in fact, we occasionally recommend them in special circumstances—but the advocates of those 
licenses show a pattern of arguing harshly against the GPL. 

In one such argument, a person stated that his use of one of the BSD licenses was an “act of humility”: 
“I ask nothing of those who use my code, except to credit me.” It is rather a stretch to describe a legal 
demand for credit as “humility,” but there is a deeper point to be considered here. 

Humility is disregarding your own self-interest, but the interest you abandon when you don't copyleft 
your code is much bigger than your own. Someone who uses your code in a nonfree program is 
denying freedom to others, so if you allow that, you're failing to defend those people's freedom. When 
it comes to defending everyone's freedom, to lie down and do nothing is an act of weakness, not 
humility. 

Releasing your code under one of the BSD licenses, or some other lax, permissive license, is not doing 
wrong; the program is still free software, and still a contribution to our community. But it is weak, and 
in most cases it is not the best way to promote users' freedom to share and change software. 

Here are specific examples of nonfree versions of free programs that have done major harm to the free 
world. 

• Those who released LLVM under a non-copyleft license enabled nVidia to release a high-quality 
nonfree compiler for its GPUs, while keeping its instruction set secret. Thus, we can't write a 
free compiler for that platform without a big reverse engineering job. The nonfree adaptation of 
LLVM is the only compiler for those machines, and is likely to remain so. 

• Intel uses a proprietary version of the MINIX system, which is free but not copylefted, in the 
Management Engine back door in its modern processors. 

- END OF CHAPTER 

103

https://www.gnu.org/licenses/copyleft.html
https://www.gnu.org/licenses/bsd.html
https://www.anandtech.com/show/5238/nvidia-releases-cuda-41-cuda-goes-llvm-and-open-source-kind-of
https://www.anandtech.com/show/5238/nvidia-releases-cuda-41-cuda-goes-llvm-and-open-source-kind-of
https://www.tomshardware.com/news/google-removing-minix-management-engine-intel,35876.html


Chapter XXXI: Copyleft: Pragmatic Idealism 

by Richard Stallman 

Every decision a person makes stems from the person's values and goals. People can have many different 
goals and values; fame, profit, love, survival, fun, and freedom, are just some of the goals that a good 
person might have. When the goal is a matter of principle, we call that idealism. 

My work on free software is motivated by an idealistic goal: spreading freedom and cooperation. I want 
to encourage free software to spread, replacing proprietary software that forbids cooperation, and thus 
make our society better. 

That's the basic reason why the GNU General Public License is written the way it is—as a copyleft. All 
code added to a GPL-covered program must be free software, even if it is put in a separate file. I make 
my code available for use in free software, and not for use in proprietary software, in order to 
encourage other people who write software to make it free as well. I figure that since proprietary 
software developers use copyright to stop us from sharing, we cooperators can use copyright to give 
other cooperators an advantage of their own: they can use our code. 

Not everyone who uses the GNU GPL has this goal. Many years ago, a friend of mine was asked to 
rerelease a copylefted program under noncopyleft terms, and he responded more or less like this: 

“Sometimes I work on free software, and sometimes I work on proprietary software—but when I work 
on proprietary software, I expect to get paid.” 

He was willing to share his work with a community that shares software, but saw no reason to give a 
handout to a business making products that would be off-limits to our community. His goal was 
different from mine, but he decided that the GNU GPL was useful for his goal too. 

If you want to accomplish something in the world, idealism is not enough—you need to choose a 
method that works to achieve the goal. In other words, you need to be “pragmatic.” Is the GPL 
pragmatic? Let's look at its results. 

Consider GNU C++. Why do we have a free C++ compiler? Only because the GNU GPL said it had 
to be free. GNU C++ was developed by an industry consortium, MCC, starting from the GNU C 
compiler. MCC normally makes its work as proprietary as can be. But they made the C++ front end 
free software, because the GNU GPL said that was the only way they could release it. The C++ front 
end included many new files, but since they were meant to be linked with GCC, the GPL did apply to 
them. The benefit to our community is evident. 

104

https://www.gnu.org/philosophy/why-copyleft.html
https://www.gnu.org/licenses/copyleft.html


Consider GNU Objective C. NeXT initially wanted to make this front end proprietary; they proposed 
to release it as .o files, and let users link them with the rest of GCC, thinking this might be a way 
around the GPL's requirements. But our lawyer said that this would not evade the requirements, that 
it was not allowed. And so they made the Objective C front end free software. 

Those examples happened years ago, but the GNU GPL continues to bring us more free software. 

Many GNU libraries are covered by the GNU Lesser General Public License, but not all. One GNU 
library which is covered by the ordinary GNU GPL is Readline, which implements command-line 
editing. I once found out about a nonfree program which was designed to use Readline, and told the 
developer this was not allowed. He could have taken command-line editing out of the program, but 
what he actually did was rerelease it under the GPL. Now it is free software. 

The programmers who write improvements to GCC (or Emacs, or Bash, or Linux, or any GPL-
covered program) are often employed by companies or universities. When the programmer wants to 
return his improvements to the community, and see his code in the next release, the boss may say, 
“Hold on there—your code belongs to us! We don't want to share it; we have decided to turn your 
improved version into a proprietary software product.” 

Here the GNU GPL comes to the rescue. The programmer shows the boss that this proprietary 
software product would be copyright infringement, and the boss realizes that he has only two choices: 
release the new code as free software, or not at all. Almost always he lets the programmer do as he 
intended all along, and the code goes into the next release. 

The GNU GPL is not Mr. Nice Guy. It says no to some of the things that people sometimes want to 
do. There are users who say that this is a bad thing—that the GPL “excludes” some proprietary 
software developers who “need to be brought into the free software community.” 

But we are not excluding them from our community; they are choosing not to enter. Their decision to 
make software proprietary is a decision to stay out of our community. Being in our community means 
joining in cooperation with us; we cannot “bring them into our community” if they don't want to 
join. 

What we can do is offer them an inducement to join. The GNU GPL is designed to make an 
inducement from our existing software: “If you will make your software free, you can use this code.” 
Of course, it won't win 'em all, but it wins some of the time. 

Proprietary software development does not contribute to our community, but its developers often 
want handouts from us. Free software users can offer free software developers strokes for the ego—
recognition and gratitude—but it can be very tempting when a business tells you, “Just let us put your 
package in our proprietary program, and your program will be used by many thousands of people!” 
The temptation can be powerful, but in the long run we are all better off if we resist it. 

105



The temptation and pressure are harder to recognize when they come indirectly, through free software 
organizations that have adopted a policy of catering to proprietary software. The X Consortium (and 
its successor, the Open Group) offers an example: funded by companies that made proprietary 
software, they strived for a decade to persuade programmers not to use copyleft. When the Open 
Group tried to make X11R6.4 nonfree software , those of us who had resisted that pressure were 120

glad that we did. 

In September 1998, several months after X11R6.4 was released with nonfree distribution terms, the 
Open Group reversed its decision and rereleased it under the same noncopyleft free software license 
that was used for X11R6.3. Thank you, Open Group—but this subsequent reversal does not 
invalidate the conclusions we draw from the fact that adding the restrictions was possible. 

Pragmatically speaking, thinking about greater long-term goals will strengthen your will to resist this 
pressure. If you focus your mind on the freedom and community that you can build by staying firm, 
you will find the strength to do it. “Stand for something, or you will fall for anything.” 

And if cynics ridicule freedom, ridicule community…if “hard-nosed realists” say that profit is the only 
ideal…just ignore them, and use copyleft all the same. 

- END OF CHAPTER 

106

https://www.gnu.org/philosophy/x.html


Chapter XXXII: The JavaScript Trap 

by Richard Stallman 

There are two kinds of moral wrongs a web page can do. This page describes the wrong of sending nonfree 
programs to run in your computer. There is also the wrong we call SaaSS, “Service as a Software 
Substitute” where the page invites you to send your data so it can do computing on it in the server—
computing which is unjust because you have no control over what computing is done. 

You may be running nonfree programs on your computer every day without realizing 
it—through your web browser. 

In the free software community, the idea that any nonfree program mistreats its users is 
familiar. Some of us defend our freedom by rejecting all proprietary software on our computers. 
Many others recognize nonfreeness as a strike against the program. 

Many users are aware that this issue applies to the plug-ins that browsers offer to install, since 
they can be free or nonfree. But browsers run other nonfree programs which they don't ask you 
about, or even tell you about—programs that web pages contain or link to. These programs are 
most often written in JavaScript, though other languages are also used. 

JavaScript (officially called ECMAScript, but few use that name) was once used for minor frills 
in web pages, such as cute but inessential navigation and display features. It was acceptable to 
consider these as mere extensions of HTML markup, rather than as true software, and disregard 
the issue. 

Some sites still use JavaScript that way, but many use it for major programs that do large jobs. 
For instance, Google Docs tries to install into your browser a JavaScript program which 
measures half a megabyte, in a compacted form that we could call Obfuscript. This compacted 
form is made from the source code, by deleting the extra spaces that make the code readable and 
the explanatory remarks that make it comprehensible, and replacing each meaningful name in the 
code with an arbitrary short name so we can't tell what it is supposed to mean. 

Part of the meaning of free software is that users have access to the program's source code (its 
plan). The source code of a program means the preferred form for programmers to modify—
including helpful spacing, explanatory remarks, and meaningful names. Compacted code is a 
bogus, useless substitute for source code; the real source code of these programs is not available 
to the users, so users cannot understand it; therefore the programs are nonfree. 

In addition to being nonfree, many of these programs are malware because they snoop on the 
user . Even nastier, some sites use services which record all the user's actions while looking 121

at the page . The services supposedly “redact” the recordings to exclude some sensitive data 122

107

https://www.gnu.org/philosophy/who-does-that-server-really-serve.html
https://www.gnu.org/philosophy/free-software-even-more-important.html
https://www.gnu.org/philosophy/free-sw.html
https://github.com/w3c/fingerprinting-guidance/issues/8
https://github.com/w3c/fingerprinting-guidance/issues/8
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/


that the web site shouldn't get. But even if that works reliably, the whole purpose of these 
services is to give the web site other personal data that it shouldn't get. 

Browsers don't normally tell you when they load JavaScript programs. Some browsers have a 
way to turn off JavaScript entirely, but even if you're aware of this issue, it would take you 
considerable trouble to identify the nontrivial nonfree programs and block them. However, even 
in the free software community most users are not aware of this issue; the browsers' silence tends 
to conceal it. 

To be clear, the language JavaScript is not inherently better or worse for users' freedom than any 
other language. It is possible to release a JavaScript program as free software, by distributing the 
source code under a free software license. If the program is self-contained—if its functioning and 
purpose are independent of the page it came in—that is fine; you can copy it to a file on your 
machine, modify it, and visit that file with a browser to run it. It's even possible to package it for 
installation just like other free programs and invocation with a shell command. These programs 
present no special moral issue different from those of C programs. 

The issue of the JavaScript trap applies when the JavaScript program comes along with a web 
page that users visit. Those JavaScript programs are written to work with a particular page or 
site, and the page or site depends on them to function. 

Suppose you copy and modify the page's JavaScript code. Then another problem arises: even if 
the program's source is available, browsers do not offer a way to run your modified version 
instead of the original when visiting that page or site. The effect is comparable to tivoization, 
although in principle not quite so hard to overcome. 

JavaScript is not the only language web sites use for programs sent to the user. Flash supported 
programming through an extended variant of JavaScript, but that is a thing of the past. Microsoft 
Silverlight seems likely to create a problem similar to Flash, except worse, since Microsoft uses 
it as a platform for nonfree codecs. A free replacement for Silverlight does not do the job 
adequately for the free world unless it normally comes with free replacement codecs. 

Java applets also run in the browser, and raise similar issues. In general, any sort of applet 
system poses this sort of problem. Having a free execution environment for an applet only brings 
us far enough to encounter the problem. 

It is theoretically possible to program in HTML and CSS, but in practice this capability is limited 
and inconvenient; merely to make it do something is an impressive hack. Such programs ought to 
be free, but CSS is not a serious problem for users' freedom as of 2019. 

A strong movement has developed that calls for web sites to communicate only through formats 
and protocols that are free (some say “open”); that is to say, whose documentation is published 
and which anyone is free to implement. However, the presence of JavaScript programs in web 
pages makes that criterion insufficient. The JavaScript language itself, as a format, is free, and 

108



use of JavaScript in a web site is not necessarily bad. However, as we've seen above, it can be 
bad—if the JavaScript program is nonfree. When the site transmits a program to the user, it is not 
enough for the program to be written in a documented and unencumbered language; that program 
must be free, too. “Transmits only free programs to the user” must become part of the criterion 
for an ethical web site. 

Silently loading and running nonfree programs is one among several issues raised by “web 
applications.” The term “web application” was designed to disregard the fundamental distinction 
between software delivered to users and software running on a server. It can refer to a specialized 
client program running in a browser; it can refer to specialized server software; it can refer to a 
specialized client program that works hand in hand with specialized server software. The client 
and server sides raise different ethical issues, even if they are so closely integrated that they 
arguably form parts of a single program. This article addresses only the issue of the client-side 
software. We are addressing the server issue separately. 

In practical terms, how can we deal with the problem of nontrivial nonfree JavaScript programs 
in web sites? The first step is to avoid running it. 

What do we mean by “nontrivial”? It is a matter of degree, so this is a matter of designing a 
simple criterion that gives good results, rather than finding the one correct answer. 

Our current criterion is to consider a JavaScript program nontrivial if any of these conditions is 
met: 

• it is referred to as an external script (from another page). 
• it declares an array more than 50 elements long. 
• it defines a named entity (function or method) that calls anything other than a primitive. 
• it defines a named entity with more than three conditional constructs and loop 

construction. 
• code outside of named definitions calls anything but primitives and functions defined 

further up in the page. 
• code outside of named definitions contains more than three conditional constructs and 

loop construction, total. 
• it calls eval. 
• it does Ajax calls. 
• it uses bracket notation for dynamic object property access, which looks like 

object[property]. 
• it alters the DOM. 
• it uses dynamic JavaScript constructs that are difficult to analyze without interpreting the 

program, or is loaded along with scripts that use such constructs. Specifically, using any 
other construct than a string literal with certain methods (Obj.write, Obj.createElement, 
and others). 

109



How do we tell whether the JavaScript code is free? In a separate article , we propose a 123

method by which a nontrivial JavaScript program in a web page can state the URL where its 
source code is located, and can state its license too, using stylized comments. 

Finally, we need to change free browsers to detect and block nontrivial nonfree JavaScript in web 
pages. The program LibreJS detects nonfree, nontrivial JavaScript in pages you visit, and blocks 
it. LibreJS is included in IceCat, and available as an add-on for Firefox. 

Browser users also need a convenient facility to specify JavaScript code to use instead of the 
JavaScript in a certain page. (The specified code might be total replacement, or a modified 
version of the free JavaScript program in that page.) Greasemonkey comes close to being able to 
do this, but not quite, since it doesn't guarantee to modify the JavaScript code in a page before 
that program starts to execute. Using a local proxy works, but is too inconvenient now to be a 
real solution. We need to construct a solution that is reliable and convenient, as well as sites for 
sharing changes. The GNU Project would like to recommend sites which are dedicated to free 
changes only. 

These features will make it possible for a JavaScript program included in a web page to be free 
in a real and practical sense. JavaScript will no longer be a particular obstacle to our freedom—
no more than C and Java are now. We will be able to reject and even replace the nonfree 
nontrivial JavaScript programs, just as we reject and replace nonfree packages that are offered 
for installation in the usual way. Our campaign for web sites to free their JavaScript can then 
begin. 

In the mean time, there's one case where it is acceptable to run a nonfree JavaScript program: to 
send a complaint to the website operators saying they should free or remove the JavaScript code 
in the site. Please don't hesitate to enable JavaScript temporarily to do that—but remember to 
disable it again afterwards. 

Acknowledgements: I thank Matt Lee and John Resig for their help in defining our proposed 
criterion, and David Parunakian for bringing the problem to my attention. 

- END OF CHAPTER 

110

https://www.gnu.org/licenses/javascript-labels.html
https://www.gnu.org/software/librejs/
https://www.gnu.org/people/people.html#mattlee
https://johnresig.com/


Chapter XXXIII: Giving the Software Field 
Protection from Patents 

by Richard Stallman 

Patents threaten every software developer, and the patent wars we have long feared have broken out. 
Software developers and software users—which, in our society, is most people—need software to be 
free of patents. 

The patents that threaten us are often called “software patents,” but that term is misleading. Such 
patents are not about any specific program. Rather, each patent describes some practical idea, and says 
that anyone carrying out the idea can be sued. So it is clearer to call them “computational idea patents.” 

The US patent system doesn't label patents to say this one's a “software patent” and that one isn't. 
Software developers are the ones who make a distinction between the patents that threaten us—those 
that cover ideas that can be implemented in software—and the rest. For example, if the patented idea is 
the shape of a physical structure or a chemical reaction, no program can implement that idea; that 
patent doesn't threaten the software field. But if the idea that's patented is a computation, that patent's 
barrel points at software developers and users. 

This is not to say that computational idea patents prohibit only software. These ideas can also be 
implemented in hardware—and many of them have been. Each patent typically covers both hardware 
and software implementations of the idea. 

The Special Problem of Software 

Still, software is where computational idea patents cause a special problem. In software, it's easy to 
implement thousands of ideas together in one program. If 10 percent are patented, that means 
hundreds of patents threaten it. 

When Dan Ravicher of the Public Patent Foundation studied one large program (Linux, which is the 
kernel of the GNU/Linux operating system) in 2004, he found 283 US patents that appeared to cover 
computing ideas implemented in the source code of that program. That same year, a magazine 
estimated that Linux was .25 percent of the whole GNU/Linux system. Multiplying 300 by 400 we get 
the order-of-magnitude estimate that the system as a whole was threatened by around 100,000 patents. 

If half of those patents were eliminated as “bad quality”—mistakes of the patent system, that is—it 
would not really change things. Whether 100,000 patents or 50,000, it's the same disaster. This is why 
it's a mistake to limit our criticism of software patents to just “patent trolls” or “bad quality” patents. 

111

https://www.gnu.org/gnu/gnu-linux-faq.html


The worst patent aggressor today is Apple, which isn't a “troll” by the usual definition; I don't know 
whether Apple's patents are “good quality,” but the better the patent's “quality” the more dangerous 
its threat. 

We need to fix the whole problem, not just part of it. 

The usual suggestions for correcting this problem legislatively involve changing the criteria for granting 
patents—for instance, to ban issuance of patents on computational practices and systems to perform 
them. This approach has two drawbacks. 

First, patent lawyers are clever at reformulating patents to fit whatever rules may apply; they transform 
any attempt at limiting the substance of patents into a requirement of mere form. For instance, many 
US computational idea patents describe a system including an arithmetic unit, an instruction 
sequencer, a memory, plus controls to carry out a particular computation. This is a peculiar way of 
describing a computer running a program that does a certain computation; it was designed to make the 
patent application satisfy criteria that the US patent system was believed for a time to require. 

Second, the US already has many thousands of computational idea patents, and changing the criteria to 
prevent issuing more would not get rid of the existing ones. We would have to wait almost 20 years for 
the problem to be entirely corrected through the expiration of these patents. We could envision 
legislating the abolition of these existing patents, but that is probably unconstitutional. (The Supreme 
Court has perversely insisted that Congress can extend private privileges at the expense of the public's 
rights but that it can't go in the other direction.) 

A Different Approach: Limit Effect, Not Patentability 

My suggestion is to change the effect of patents. We should legislate that developing, distributing, or 
running a program on generally used computing hardware does not constitute patent infringement. 
This approach has several advantages: 

• It does not require classifying patents or patent applications as “software” or “not software.” 
• It provides developers and users with protection from both existing and potential future 

computational idea patents. 
• Patent lawyers cannot defeat the intended effect by writing applications differently. 

This approach doesn't entirely invalidate existing computational idea patents, because they would 
continue to apply to implementations using special-purpose hardware. This is an advantage because it 
eliminates an argument against the legal validity of the plan. The US passed a law some years ago 
shielding surgeons from patent lawsuits, so that even if surgical procedures are patented, surgeons are 
safe. That provides a precedent for this solution. 

112



Software developers and software users need protection from patents. This is the only legislative 
solution that would provide full protection for all. We could then go back to competing or 
cooperating… without the fear that some stranger will wipe away our work. 

- END OF CHAPTER 

113



Chapter XXXIV: Misinterpreting Copyright—A 
Series of Errors 

by Richard Stallman 

Something strange and dangerous is happening in copyright law. Under the US Constitution, 
copyright exists to benefit users—those who read books, listen to music, watch movies, or run software
—not for the sake of publishers or authors. Yet even as people tend increasingly to reject and disobey 
the copyright restrictions imposed on them “for their own benefit,” the US government is adding more 
restrictions, and trying to frighten the public into obedience with harsh new penalties. 

How did copyright policies come to be diametrically opposed to their stated purpose? And how can we 
bring them back into alignment with that purpose? To understand, we should start by looking at the 
root of United States copyright law: the US Constitution. 

Copyright in the US Constitution 

When the US Constitution was drafted, the idea that authors were entitled to a copyright monopoly 
was proposed—and rejected. The founders of our country adopted a different premise, that copyright 
is not a natural right of authors, but an artificial concession made to them for the sake of progress. The 
Constitution gives permission for a copyright system with this paragraph (Article I, Section 8): 

[Congress shall have the power] to promote the Progress of Science and the useful Arts, by securing for 
limited Times to Authors and Inventors the exclusive Right to their respective Writings and 
Discoveries. 

The Supreme Court has repeatedly affirmed that promoting progress means benefit for the users of 
copyrighted works. For example, in Fox Film v. Doyal, the court said, 

The sole interest of the United States and the primary object in conferring the [copyright] monopoly 
lie in the general benefits derived by the public from the labors of authors. 

This fundamental decision explains why copyright is not required by the Constitution, only 
permitted as an option—and why it is supposed to last for “limited times.” If copyright were a natural 
right, something that authors have because they deserve it, nothing could justify terminating this right 
after a certain period of time, any more than everyone's house should become public property after a 
certain lapse of time from its construction. 

114



The “copyright bargain” 

The copyright system works by providing privileges and thus benefits to publishers and authors; but it 
does not do this for their sake. Rather, it does this to modify their behavior: to provide an incentive for 
authors to write more and publish more. In effect, the government spends the public's natural rights, 
on the public's behalf, as part of a deal to bring the public more published works. Legal scholars call 
this concept the “copyright bargain.” It is like a government purchase of a highway or an airplane using 
taxpayers' money, except that the government spends our freedom instead of our money. 

But is the bargain as it exists actually a good deal for the public? Many alternative bargains are possible; 
which one is best? Every issue of copyright policy is part of this question. If we misunderstand the 
nature of the question, we will tend to decide the issues badly. 

The Constitution authorizes granting copyright powers to authors. In practice, authors typically cede 
them to publishers; it is usually the publishers, not the authors, who exercise these powers and get most 
of the benefits, though authors may get a small portion. Thus it is usually the publishers that lobby to 
increase copyright powers. To better reflect the reality of copyright rather than the myth, this article 
refers to publishers rather than authors as the holders of copyright powers. It also refers to the users of 
copyrighted works as “readers,” even though using them does not always mean reading, because “the 
users” is remote and abstract. 

The first error: “striking a balance” 

The copyright bargain places the public first: benefit for the reading public is an end in itself; benefits 
(if any) for publishers are just a means toward that end. Readers' interests and publishers' interests are 
thus qualitatively unequal in priority. The first step in misinterpreting the purpose of copyright is the 
elevation of the publishers to the same level of importance as the readers. 

It is often said that US copyright law is meant to “strike a balance” between the interests of publishers 
and readers. Those who cite this interpretation present it as a restatement of the basic position stated in 
the Constitution; in other words, it is supposed to be equivalent to the copyright bargain. 

But the two interpretations are far from equivalent; they are different conceptually, and different in 
their implications. The balance concept assumes that the readers' and publishers' interests differ in 
importance only quantitatively, in how much weight we should give them, and in what actions they 
apply to. The term “stakeholders” is often used to frame the issue in this way; it assumes that all kinds 
of interest in a policy decision are equally important. This view rejects the qualitative distinction 
between the readers' and publishers' interests which is at the root of the government's participation in 
the copyright bargain. 

115



The consequences of this alteration are far-reaching, because the great protection for the public in the 
copyright bargain—the idea that copyright privileges can be justified only in the name of the readers, 
never in the name of the publishers—is discarded by the “balance” interpretation. Since the interest of 
the publishers is regarded as an end in itself, it can justify copyright privileges; in other words, the 
“balance” concept says that privileges can be justified in the name of someone other than the public. 

As a practical matter, the consequence of the “balance” concept is to reverse the burden of justification 
for changes in copyright law. The copyright bargain places the burden on the publishers to convince 
the readers to cede certain freedoms. The concept of balance reverses this burden, practically speaking, 
because there is generally no doubt that publishers will benefit from additional privilege. Unless harm 
to the readers can be proved, sufficient to “outweigh” this benefit, we are led to conclude that the 
publishers are entitled to almost any privilege they request. 

Since the idea of “striking a balance” between publishers and readers denies the readers the primacy 
they are entitled to, we must reject it. 

Balancing against what? 

When the government buys something for the public, it acts on behalf of the public; its responsibility 
is to obtain the best possible deal—best for the public, not for the other party in the agreement. 

For example, when signing contracts with construction companies to build highways, the government 
aims to spend as little as possible of the public's money. Government agencies use competitive bidding 
to push the price down. 

As a practical matter, the price cannot be zero, because contractors will not bid that low. Although not 
entitled to special consideration, they have the usual rights of citizens in a free society, including the 
right to refuse disadvantageous contracts; even the lowest bid will be high enough for some contractor 
to make money. So there is indeed a balance, of a kind. But it is not a deliberate balancing of two 
interests each with claim to special consideration. It is a balance between a public goal and market 
forces. The government tries to obtain for the taxpaying motorists the best deal they can get in the 
context of a free society and a free market. 

In the copyright bargain, the government spends our freedom instead of our money. Freedom is more 
precious than money, so government's responsibility to spend our freedom wisely and frugally is even 
greater than its responsibility to spend our money thus. Governments must never put the publishers' 
interests on a par with the public's freedom. 

Not “balance” but “trade-off” 

The idea of balancing the readers' interests against the publishers' is the wrong way to judge copyright 
policy, but there are indeed two interests to be weighed: two interests of the readers. Readers have an 

116



interest in their own freedom in using published works; depending on circumstances, they may also 
have an interest in encouraging publication through some kind of incentive system. 

The word “balance,” in discussions of copyright, has come to stand as shorthand for the idea of 
“striking a balance” between the readers and the publishers. Therefore, to use the word “balance” in 
regard to the readers' two interests would be confusing.[1] We need another term. 

In general, when one party has two goals that partly conflict, and cannot completely achieve both of 
them, we call this a “trade-off.” Therefore, rather than speaking of “striking the right balance” between 
parties, we should speak of “finding the right trade-off between spending our freedom and keeping it.” 

The second error: maximizing one output 

The second mistake in copyright policy consists of adopting the goal of maximizing—not just 
increasing—the number of published works. The erroneous concept of “striking a balance” elevated 
the publishers to parity with the readers; this second error places them far above the readers. 

When we purchase something, we do not generally buy the whole quantity in stock or the most 
expensive model. Instead we conserve funds for other purchases, by buying only what we need of any 
particular good, and choosing a model of sufficient rather than highest quality. The principle of 
diminishing returns suggests that spending all our money on one particular good is likely to be an 
inefficient allocation of resources; we generally choose to keep some money for another use. 

Diminishing returns applies to copyright just as to any other purchase. The first freedoms we should 
trade away are those we miss the least, and whose sacrifice gives the largest encouragement to 
publication. As we trade additional freedoms that cut closer to home, we find that each trade is a bigger 
sacrifice than the last, while bringing a smaller increment in literary activity. Well before the increment 
becomes zero, we may well say it is not worth its incremental price; we would then settle on a bargain 
whose overall result is to increase the amount of publication, but not to the utmost possible extent. 

Accepting the goal of maximizing publication rejects all these wiser, more advantageous bargains in 
advance—it dictates that the public must cede nearly all of its freedom to use published works, for just 
a little more publication. 

The rhetoric of maximization 

In practice, the goal of maximizing publication regardless of the cost to freedom is supported by 
widespread rhetoric which asserts that public copying is illegitimate, unfair, and intrinsically wrong. 
For instance, the publishers call people who copy “pirates,” a smear term designed to equate sharing 
information with your neighbor with attacking a ship. (This smear term was formerly used by authors 
to describe publishers who found lawful ways to publish unauthorized editions; its modern use by the 

117



publishers is almost the reverse.) This rhetoric directly rejects the constitutional basis for copyright, but 
presents itself as representing the unquestioned tradition of the American legal system. 

The “pirate” rhetoric is typically accepted because it so pervades the media that few people realize how 
radical it is. It is effective because if copying by the public is fundamentally illegitimate, we can never 
object to the publishers' demand that we surrender our freedom to do so. In other words, when the 
public is challenged to show why publishers should not receive some additional power, the most 
important reason of all—“We want to copy”—is disqualified in advance. 

This leaves no way to argue against increasing copyright power except using side issues. Hence, 
opposition to stronger copyright powers today almost exclusively cites side issues, and never dares cite 
the freedom to distribute copies as a legitimate public value. 

As a practical matter, the goal of maximization enables publishers to argue that “A certain practice is 
reducing our sales—or we think it might—so we presume it diminishes publication by some unknown 
amount, and therefore it should be prohibited.” We are led to the outrageous conclusion that the 
public good is measured by publishers' sales: What's good for General Media is good for the USA. 

The third error: maximizing publishers' power 

Once the publishers have obtained assent to the policy goal of maximizing publication output at any 
cost, their next step is to infer that this requires giving them the maximum possible powers—making 
copyright cover every imaginable use of a work, or applying some other legal tool such as “shrink wrap” 
licenses to equivalent effect. This goal, which entails the abolition of “fair use” and the “right of first 
sale,” is being pressed at every available level of government, from states of the US to international 
bodies. 

This step is erroneous because strict copyright rules obstruct the creation of useful new works. For 
instance, Shakespeare borrowed the plots of some of his plays from works others had published a few 
decades before, so if today's copyright law had been in effect, his plays would have been illegal. 

Even if we wanted the highest possible rate of publication, regardless of cost to the public, maximizing 
publishers' power is the wrong way to get it. As a means of promoting progress, it is self-defeating. 

The results of the three errors 

The current trend in copyright legislation is to hand publishers broader powers for longer periods of 
time. The conceptual basis of copyright, as it emerges distorted from the series of errors, rarely offers a 
basis for saying no. Legislators give lip service to the idea that copyright serves the public, while in fact 
giving publishers whatever they ask for. 

For example, here is what Senator Hatch said when introducing S. 483, a 1995 bill to increase the term 
of copyright by 20 years: 

118



I believe we are now at such a point with respect to the question of whether the current term of 
copyright adequately protects the interests of authors and the related question of whether the term of 
protection continues to provide a sufficient incentive for the creation of new works of authorship. 

This bill extended the copyright on already published works written since the 1920s. This change was a 
giveaway to publishers with no possible benefit to the public, since there is no way to retroactively 
increase now the number of books published back then. Yet it cost the public a freedom that is 
meaningful today—the freedom to redistribute books from that era. Note the use of the propaganda 
term, “protect,” which embodies the second of the three errors. 

The bill also extended the copyrights of works yet to be written. For works made for hire, copyright 
would last 95 years instead of the present 75 years. Theoretically this would increase the incentive to 
write new works; but any publisher that claims to need this extra incentive should be required 
substantiate the claim with projected balance sheets for 75 years in the future. 

Needless to say, Congress did not question the publishers' arguments: a law extending copyright was 
enacted in 1998. It was officially called the Sonny Bono Copyright Term Extension Act, named after 
one of its sponsors who died earlier that year. We usually call it the Mickey Mouse Copyright Act, since 
we presume its real motive was to prevent the copyright on the appearance of Mickey Mouse from 
expiring. Bono's widow, who served the rest of his term, made this statement: 

Actually, Sonny wanted the term of copyright protection to last forever. I am informed by staff that 
such a change would violate the Constitution. I invite all of you to work with me to strengthen our 
copyright laws in all of the ways available to us. As you know, there is also Jack Valenti's proposal for 
term to last forever less one day. Perhaps the Committee may look at that next Congress. 

The Supreme Court later heard a case that sought to overturn the law on the grounds that the 
retroactive extension fails to serve the Constitution's goal of promoting progress. The court responded 
by abdicating its responsibility to judge the question; on copyright, the Constitution requires only lip 
service. 

Another law, passed in 1997, made it a felony to make sufficiently many copies of any published work, 
even if you give them away to friends just to be nice. Previously this was not a crime in the US at all. 

An even worse law, the Digital Millennium Copyright Act (DMCA), was designed to bring back what 
was then called “copy protection”—now known as DRM (Digital Restrictions Management)—which 
users already detested, by making it a crime to defeat the restrictions, or even publish information 
about how to defeat them. This law ought to be called the “Domination by Media Corporations Act” 
because it effectively offers publishers the chance to write their own copyright law. It says they can 
impose any restrictions whatsoever on the use of a work, and these restrictions take the force of law 
provided the work contains some sort of encryption or license manager to enforce them. 

119

https://www.gnu.org/philosophy/words-to-avoid.html#Protection
https://www.gnu.org/proprietary/proprietary-drm.html


One of the arguments offered for this bill was that it would implement a recent treaty to increase 
copyright powers. The treaty was promulgated by the World Intellectual Property Organization, an 
organization dominated by copyright- and patent-holding interests, with the aid of pressure from the 
Clinton administration; since the treaty only increases copyright power, whether it serves the public 
interest in any country is doubtful. In any case, the bill went far beyond what the treaty required. 

Libraries were a key source of opposition to this bill, especially to the aspects that block the forms of 
copying that are considered fair use. How did the publishers respond? Former representative Pat 
Schroeder, now a lobbyist for the Association of American Publishers, said that the publishers “could 
not live with what [the libraries were] asking for.” Since the libraries were asking only to preserve part 
of the status quo, one might respond by wondering how the publishers had survived until the present 
day. 

Congressman Barney Frank, in a meeting with me and others who opposed this bill, showed how far 
the US Constitution's view of copyright has been disregarded. He said that new powers, backed by 
criminal penalties, were needed urgently because the “movie industry is worried,” as well as the “music 
industry” and other “industries.” I asked him, “But is this in the public interest?” His response was 
telling: “Why are you talking about the public interest? These creative people don't have to give up 
their rights for the public interest!” The “industry” has been identified with the “creative people” it 
hires, copyright has been treated as its entitlement, and the Constitution has been turned upside down. 

The DMCA was enacted in 1998. As enacted, it says that fair use remains nominally legitimate, but 
allows publishers to prohibit all software or hardware that you could practice it with. Effectively, fair 
use is prohibited. 

Based on this law, the movie industry has imposed censorship on free software for reading and playing 
DVDs, and even on the information about how to read them. In April 2001, Professor Edward Felten 
of Princeton University was intimidated by lawsuit threats from the Recording Industry Association of 
America (RIAA) into withdrawing a scientific paper stating what he had learned about a proposed 
encryption system for restricting access to recorded music. 

We are also beginning to see e-books that take away many of readers' traditional freedoms—for 
instance, the freedom to lend a book to your friend, to sell it to a used book store, to borrow it from a 
library, to buy it without giving your name to a corporate data bank, even the freedom to read it twice. 
Encrypted e-books generally restrict all these activities—you can read them only with special secret 
software designed to restrict you. 

I will never buy one of these encrypted, restricted e-books, and I hope you will reject them too. If an e-
book doesn't give you the same freedoms as a traditional paper book, don't accept it! 

Anyone independently releasing software that can read restricted e-books risks prosecution. A Russian 
programmer, Dmitry Sklyarov, was arrested in 2001 while visiting the US to speak at a conference, 

120

https://www.gnu.org/philosophy/not-ipr.html


because he had written such a program in Russia, where it was lawful to do so. Now Russia is 
preparing a law to prohibit it too, and the European Union recently adopted one. 

Mass-market e-books have been a commercial failure so far, but not because readers chose to defend 
their freedom; they were unattractive for other reasons, such as that computer display screens are not 
easy surfaces to read from. We can't rely on this happy accident to protect us in the long term; the next 
attempt to promote e-books will use “electronic paper”—book-like objects into which an encrypted, 
restricted e-book can be downloaded. If this paper-like surface proves more appealing than today's 
display screens, we will have to defend our freedom in order to keep it. Meanwhile, e-books are making 
inroads in niches: NYU and other dental schools require students to buy their textbooks in the form of 
restricted e-books. 

The media companies are not satisfied yet. In 2001, Disney-funded Senator Hollings proposed a bill 
called the “Security Systems Standards and Certification Act” (SSSCA)[2], which would require all 
computers (and other digital recording and playback devices) to have government-mandated copy-
restriction systems. That is their ultimate goal, but the first item on their agenda is to prohibit any 
equipment that can tune digital HDTV unless it is designed to be impossible for the public to “tamper 
with” (i.e., modify for their own purposes). Since free software is software that users can modify, we 
face here for the first time a proposed law that explicitly prohibits free software for a certain job. 
Prohibition of other jobs will surely follow. If the FCC adopts this rule, existing free software such as 
GNU Radio would be censored. 

To block these bills and rules requires political action.[3] 

Finding the right bargain 

What is the proper way to decide copyright policy? If copyright is a bargain made on behalf of the 
public, it should serve the public interest above all. The government's duty when selling the public's 
freedom is to sell only what it must, and sell it as dearly as possible. At the very least, we should pare 
back the extent of copyright as much as possible while maintaining a comparable level of publication. 

Since we cannot find this minimum price in freedom through competitive bidding, as we do for 
construction projects, how can we find it? 

One possible method is to reduce copyright privileges in stages, and observe the results. By seeing if and 
when measurable diminutions in publication occur, we will learn how much copyright power is really 
necessary to achieve the public's purposes. We must judge this by actual observation, not by what 
publishers say will happen, because they have every incentive to make exaggerated predictions of doom 
if their powers are reduced in any way. 

121



Copyright policy includes several independent dimensions, which can be adjusted separately. After we 
find the necessary minimum for one policy dimension, it may still be possible to reduce other 
dimensions of copyright while maintaining the desired publication level. 

One important dimension of copyright is its duration, which is now typically on the order of a century. 
Reducing the monopoly on copying to ten years, starting from the date when a work is published, 
would be a good first step. Another aspect of copyright, which covers the making of derivative works, 
could continue for a longer period. 

Why count from the date of publication? Because copyright on unpublished works does not directly 
limit readers' freedom; whether we are free to copy a work is moot when we do not have copies. So 
giving authors a longer time to get a work published does no harm. Authors (who generally do own the 
copyright prior to publication) will rarely choose to delay publication just to push back the end of the 
copyright term. 

Why ten years? Because that is a safe proposal; we can be confident on practical grounds that this 
reduction would have little impact on the overall viability of publishing today. In most media and 
genres, successful works are very profitable in just a few years, and even successful works are usually out 
of print well before ten. Even for reference works, whose useful life may be many decades, ten-year 
copyright should suffice: updated editions are issued regularly, and many readers will buy the 
copyrighted current edition rather than copy a ten-year-old public domain version. 

Ten years may still be longer than necessary; once things settle down, we could try a further reduction 
to tune the system. At a panel on copyright at a literary convention, where I proposed the ten-year 
term, a noted fantasy author sitting beside me objected vehemently, saying that anything beyond five 
years was intolerable. 

But we don't have to apply the same time span to all kinds of works. Maintaining the utmost 
uniformity of copyright policy is not crucial to the public interest, and copyright law already has many 
exceptions for specific uses and media. It would be foolish to pay for every highway project at the rates 
necessary for the most difficult projects in the most expensive regions of the country; it is equally 
foolish to “pay” for all kinds of art with the greatest price in freedom that we find necessary for any one 
kind. 

So perhaps novels, dictionaries, computer programs, songs, symphonies, and movies should have 
different durations of copyright, so that we can reduce the duration for each kind of work to what is 
necessary for many such works to be published. Perhaps movies over one hour long could have a 
twenty-year copyright, because of the expense of producing them. In my own field, computer 
programming, three years should suffice, because product cycles are even shorter than that. 

Another dimension of copyright policy is the extent of fair use: some ways of reproducing all or part of 
a published work that are legally permitted even though it is copyrighted. The natural first step in 

122



reducing this dimension of copyright power is to permit occasional private small-quantity 
noncommercial copying and distribution among individuals. This would eliminate the intrusion of 
the copyright police into people's private lives, but would probably have little effect on the sales of 
published works. (It may be necessary to take other legal steps to ensure that shrink-wrap licenses 
cannot be used to substitute for copyright in restricting such copying.) The experience of Napster 
shows that we should also permit noncommercial verbatim redistribution to the general public—when 
so many of the public want to copy and share, and find it so useful, only draconian measures will stop 
them, and the public deserves to get what it wants. 

For novels, and in general for works that are used for entertainment, noncommercial verbatim 
redistribution may be sufficient freedom for the readers. Computer programs, being used for 
functional purposes (to get jobs done), call for additional freedoms beyond that, including the freedom 
to publish an improved version. See “Free Software Definition,” in this book, for an explanation of the 
freedoms that software users should have. But it may be an acceptable compromise for these freedoms 
to be universally available only after a delay of two or three years from the program's publication. 

Changes like these could bring copyright into line with the public's wish to use digital technology to 
copy. Publishers will no doubt find these proposals “unbalanced”; they may threaten to take their 
marbles and go home, but they won't really do it, because the game will remain profitable and it will be 
the only game in town. 

As we consider reductions in copyright power, we must make sure media companies do not simply 
replace it with end-user license agreements. It would be necessary to prohibit the use of contracts to 
apply restrictions on copying that go beyond those of copyright. Such limitations on what mass-
market nonnegotiated contracts can require are a standard part of the US legal system. 

A personal note 

I am a software designer, not a legal scholar. I've become concerned with copyright issues because 
there's no avoiding them in the world of computer networks, such as the Internet. As a user of 
computers and networks for 30 years, I value the freedoms that we have lost, and the ones we may lose 
next. As an author, I can reject the romantic mystique of the author as semidivine creator, often cited 
by publishers to justify increased copyright powers for authors—powers which these authors will then 
sign away to publishers. 

Most of this article consists of facts and reasoning that you can check, and proposals on which you can 
form your own opinions. But I ask you to accept one thing on my word alone: that authors like me 
don't deserve special power over you. If you wish to reward me further for the software or books I have 
written, I would gratefully accept a check—but please don't surrender your freedom in my name. 

123

https://www.gnu.org/philosophy/words-to-avoid.html#Creator


Footnotes 

1. See Julian Sanchez’s article “The Trouble with ‘Balance’ Metaphors” for an examination of 
“how the analogy between sound judgment and balancing weights may constrain our thinking 
in unhealthy ways.” 

2. Since renamed to the unpronounceable CBDTPA, for which a good mnemonic is “Consume, 
But Don't Try Programming Anything,” but it really stands for the “Consumer Broadband 
and Digital Television Promotion Act.” 

3. If you would like to help, I recommend the Web sites DefectiveByDesign.org, 
publicknowledge.org and www.eff.org. 

- END OF CHAPTER 

124

http://www.juliansanchez.com/2011/02/04/the-trouble-with-balance-metaphors/
https://www.defectivebydesign.org/
https://www.publicknowledge.org/
https://www.eff.org/


Chapter XXXV: Did You Say “Intellectual 
Property”? It's a Seductive Mirage 

by Richard Stallman 

It has become fashionable to toss copyright, patents, and trademarks—three separate and 
different entities involving three separate and different sets of laws—plus a dozen other laws into 
one pot and call it “intellectual property.” The distorting and confusing term did not become 
common by accident. Companies that gain from the confusion promoted it. The clearest way out 
of the confusion is to reject the term entirely. 

According to Professor Mark Lemley, now of the Stanford Law School, the widespread use of the term 
“intellectual property” is a fashion that followed the 1967 founding of the World “Intellectual 
Property” Organization (WIPO), and only became really common in recent years. (WIPO is formally a 
UN organization, but in fact represents the interests of the holders of copyrights, patents, and 
trademarks.) Wide use dates from around 1990 . (Local image copy ) 124 125

The term carries a bias that is not hard to see: it suggests thinking about copyright, patents and 
trademarks by analogy with property rights for physical objects. (This analogy is at odds with the legal 
philosophies of copyright law, of patent law, and of trademark law, but only specialists know that.) 
These laws are in fact not much like physical property law, but use of this term leads legislators to 
change them to be more so. Since that is the change desired by the companies that exercise copyright, 
patent and trademark powers, the bias introduced by the term “intellectual property” suits them. 

The bias is reason enough to reject the term, and people have often asked me to propose some other 
name for the overall category—or have proposed their own alternatives (often humorous). Suggestions 
include IMPs, for Imposed Monopoly Privileges, and GOLEMs, for Government-Originated Legally 
Enforced Monopolies. Some speak of “exclusive rights regimes,” but referring to restrictions as “rights” 
is doublethink too. 

Some of these alternative names would be an improvement, but it is a mistake to replace “intellectual 
property” with any other term. A different name will not address the term's deeper problem: 
overgeneralization. There is no such unified thing as “intellectual property”—it is a mirage. The only 
reason people think it makes sense as a coherent category is that widespread use of the term has misled 
them about the laws in question. 

The term “intellectual property” is at best a catch-all to lump together disparate laws. Nonlawyers who 
hear one term applied to these various laws tend to assume they are based on a common principle and 
function similarly. 

125

https://books.google.com/ngrams/graph?content=intellectual+property&year_start=1800&year_end=2008&corpus=15&smoothing=1&share=&direct_url=t1%3B%2Cintellectual%20property%3B%2Cc0
https://www.gnu.org/graphics/seductivemirage.png


Nothing could be further from the case. These laws originated separately, evolved differently, cover 
different activities, have different rules, and raise different public policy issues.  

For instance, copyright law was designed to promote authorship and art, and covers the details of 
expression of a work. Patent law was intended to promote the publication of useful ideas, at the price 
of giving the one who publishes an idea a temporary monopoly over it—a price that may be worth 
paying in some fields and not in others. 

Trademark law, by contrast, was not intended to promote any particular way of acting, but simply to 
enable buyers to know what they are buying. Legislators under the influence of the term “intellectual 
property,” however, have turned it into a scheme that provides incentives for advertising. And these are 
just three out of many laws that the term refers to. 

Since these laws developed independently, they are different in every detail, as well as in their basic 
purposes and methods. Thus, if you learn some fact about copyright law, you'd be wise to assume that 
patent law is different. You'll rarely go wrong! 

In practice, nearly all general statements you encounter that are formulated using “intellectual 
property” will be false. For instance, you'll see claims that “its” purpose is to “promote innovation,” 
but that only fits patent law and perhaps plant variety monopolies. Copyright law is not concerned 
with innovation; a pop song or novel is copyrighted even if there is nothing innovative about it. 
Trademark law is not concerned with innovation; if I start a tea store and call it “rms tea,” that would 
be a solid trademark even if I sell the same teas in the same way as everyone else. Trade secret law is not 
concerned with innovation, except tangentially; my list of tea customers would be a trade secret with 
nothing to do with innovation. 

You will also see assertions that “intellectual property” is concerned with “creativity,” but really that 
only fits copyright law. More than creativity is needed to make a patentable invention. Trademark law 
and trade secret law have nothing to do with creativity; the name “rms tea” isn't creative at all, and 
neither is my secret list of tea customers. 

People often say “intellectual property” when they really mean some larger or smaller set of laws. For 
instance, rich countries often impose unjust laws on poor countries to squeeze money out of them. 
Some of these laws are among those called “intellectual property” laws, and others are not; nonetheless, 
critics of the practice often grab for that label because it has become familiar to them. By using it, they 
misrepresent the nature of the issue. It would be better to use an accurate term, such as “legislative 
colonization,” that gets to the heart of the matter. 

126



Laymen are not alone in being confused by this term. Even law professors who teach these laws are 
lured and distracted by the seductiveness of the term “intellectual property,” and make general 
statements that conflict with facts they know. For example, one professor wrote in 2006: 

Unlike their descendants who now work the floor at WIPO, the framers of the US constitution had a 
principled, procompetitive attitude to intellectual property. They knew rights might be necessary, 
but…they tied congress's hands, restricting its power in multiple ways. 

That statement refers to Article 1, Section 8, Clause 8 of the US Constitution, which authorizes 
copyright law and patent law. That clause, though, has nothing to do with trademark law, trade secret 
law, or various others. The term “intellectual property” led that professor to make a false 
generalization. 

The term “intellectual property” also leads to simplistic thinking. It leads people to focus on the 
meager commonality in form that these disparate laws have—that they create artificial privileges for 
certain parties—and to disregard the details which form their substance: the specific restrictions each 
law places on the public, and the consequences that result. This simplistic focus on the form 
encourages an “economistic” approach to all these issues. 

Economics operates here, as it often does, as a vehicle for unexamined assumptions. These include 
assumptions about values, such as that amount of production matters while freedom and way of life 
do not, and factual assumptions which are mostly false, such as that copyrights on music supports 
musicians, or that patents on drugs support life-saving research. 

Another problem is that, at the broad scale implicit in the term “intellectual property,” the specific 
issues raised by the various laws become nearly invisible. These issues arise from the specifics of each 
law—precisely what the term “intellectual property” encourages people to ignore. For instance, one 
issue relating to copyright law is whether music sharing should be allowed; patent law has nothing to 
do with this. Patent law raises issues such as whether poor countries should be allowed to produce life-
saving drugs and sell them cheaply to save lives; copyright law has nothing to do with such matters. 

Neither of these issues is solely economic in nature, and their noneconomic aspects are very different; 
using the shallow economic overgeneralization as the basis for considering them means ignoring the 
differences. Putting the two laws in the “intellectual property” pot obstructs clear thinking about each 
one. 

Thus, any opinions about “the issue of intellectual property” and any generalizations about this 
supposed category are almost surely foolish. If you think all those laws are one issue, you will tend to 
choose your opinions from a selection of sweeping overgeneralizations, none of which is any good. 

127



Rejection of “intellectual property” is not mere philosophical recreation. The term does real harm. 
Apple used it to warp debate about Nebraska's “right to repair” bill . The bogus concept gave Apple 126

a way to dress up its preference for secrecy, which conflicts with its customers' rights, as a supposed 
principle that customers and the state must yield to. 

If you want to think clearly about the issues raised by patents, or copyrights, or trademarks, or various 
other different laws, the first step is to forget the idea of lumping them together, and treat them as 
separate topics. The second step is to reject the narrow perspectives and simplistic picture the term 
“intellectual property” suggests. Consider each of these issues separately, in its fullness, and you have a 
chance of considering them well. 

And when it comes to reforming WIPO, here is one proposal for changing the name and substance of 
WIPO . 127

- END OF CHAPTER 

128

https://www.theguardian.com/us-news/2017/mar/11/nebraska-farmers-right-to-repair-bill-stalls-apple
https://fsfe.org/activities/wipo/wiwo.en.html
https://fsfe.org/activities/wipo/wiwo.en.html


Chapter XXXVI: Opposing Digital Rights 
Mismanagement 

(Or Digital Restrictions Management, as we now call it) 

by Richard Stallman 

In 1989, in a very different world, I wrote the first version of the GNU General Public License, a 
license that gives computer users freedom. The GNU GPL, of all the free software licenses, is the one 
that most fully embodies the values and aims of the free software movement, by ensuring the four 
fundamental freedoms for every user. These are freedoms to 0) run the program as you wish; 1) study 
the source code and change it to do what you wish; 2) make and distribute copies, when you wish; 3) 
and distribute modified versions, when you wish. 

Any license that grants these freedoms is a free software license. The GNU GPL goes further: it 
protects these freedoms for all users of all versions of the program by forbidding middlemen from 
stripping them off. Most components of the GNU/Linux operating system, including the Linux 
component that was made free software in 1992, are licensed under GPL version 2, released in 1991. 
Now, with legal advice from Professor Eben Moglen, I am designing version 3 of the GNU GPL. 

GPLv3 must cope with threats to freedom that we did not imagine in 1989. The coming generation of 
computers, and many products with increasingly powerful embedded computers, are being turned 
against us by their manufacturers before we buy them—they are designed to restrict what we can use 
them to do. 

First, there was the TiVo. People may think of it as an appliance to record TV programs, but it contains 
a real computer running a GNU/Linux system. As required by the GPL, you can get the source code 
for the system. You can change the code, recompile and install it. But once you install a changed 
version, the TiVo won't run at all, because of a special mechanism designed to sabotage you. Freedom 
No. 1, the freedom to change the software to do what you wish, has become a sham. 

Then came Treacherous Computing, promoted as “Trusted Computing,” meaning that companies 
can “trust” your computer to obey them instead of you. It enables network sites to tell which program 
you are running; if you change the program, or write your own, they will refuse to talk to you. Once 
again, freedom No. 1 becomes a sham. 

Microsoft has a scheme, originally called Palladium, that enables an application program to “seal” data 
so that no other program can access it. If Disney distributes movies this way, you'll be unable to 
exercise your legal rights of fair use and de minimis use. If an application records your data this way, it 
will be the ultimate in vendor lock-in. This too destroys freedom No. 1; if modified versions of a 

129



program cannot access the same data, you can't really change the program to do what you wish. 
Something like Palladium is planned for a coming version of Windows. 

AACS, the “Advanced Access Content System,” promoted by Disney, IBM, Microsoft, Intel, Sony, 
and others, aims to restrict use of HDTV recordings—and software—so they can't be used except as 
these companies permit. Sony was caught last year installing a “rootkit” into millions of people's 
computers, and not telling them how to remove it. Sony has learned its lesson: it will install the 
“rootkit” in your computer before you get it, and you won't be able to remove it. This plan explicitly 
requires devices to be “robust”—meaning you cannot change them. Its implementors will surely want 
to include GPL-covered software, trampling freedom No. 1. This scheme should get “AACSed,” and a 
boycott of HD DVD and Blu-ray has already been announced . 128

Allowing a few businesses to organize a scheme to deny our freedoms for their profit is a failure of 
government, but so far most of the world's governments, led by the U.S., have acted as paid 
accomplices rather than policemen for these schemes. The copyright industry has promulgated its 
peculiar ideas of right and wrong so vigorously that some readers may find it hard to entertain the idea 
that individual freedom can trump their profits. 

Facing these threats to our freedom, what should the free software community do? Some say we 
should give in and accept the distribution of our software in ways that don't allow modified versions to 
function, because this will make our software more popular. Some refer to free software as “open 
source,” that being the slogan of an amoral approach to the matter, which cites powerful and reliable 
software as the highest goals. If we allow companies to use our software to restrict us, this “open source 
DRM” could help them restrict us more powerfully and reliably. Those who wield the power could 
benefit by sharing and improving the source code of the software they use to do so. We too could read 
that source code—read it and weep, if we can't make a changed version run. For the goals of freedom 
and community—the goals of the free software movement—this concession would amount to failure. 

We developed the GNU operating system so that we could control our own computers, and cooperate 
freely in using them in freedom. To seek popularity for our software by ceding this freedom would 
defeat the purpose; at best, we might flatter our egos. Therefore we have designed version 3 of the 
GNU GPL to uphold the user's freedom to modify the source code and put modified versions to real 
use. 

The debate about the GPL v3 is part of a broader debate about DRM versus your rights. The motive 
for DRM schemes is to increase profits for those who impose them, but their profit is a side issue when 
millions of people's freedom is at stake; desire for profit, though not wrong in itself, cannot justify 
denying the public control over its technology. Defending freedom means thwarting DRM. 

130

https://web.archive.org/web/20140217075603/http://bluraysucks.com/
https://web.archive.org/web/20140217075603/http://bluraysucks.com/


Chapter XXXVII: Can You Trust Your Computer? 

by Richard Stallman 

Who should your computer take its orders from? Most people think their computers should obey 
them, not obey someone else. With a plan they call “trusted computing,” large media corporations 
(including the movie companies and record companies), together with computer companies such as 
Microsoft and Intel, are planning to make your computer obey them instead of you. (Microsoft's 
version of this scheme is called Palladium.) Proprietary programs have included malicious features 
before, but this plan would make it universal. 

Proprietary software means, fundamentally, that you don't control what it does; you can't study the 
source code, or change it. It's not surprising that clever businessmen find ways to use their control to 
put you at a disadvantage. Microsoft has done this several times: one version of Windows was designed 
to report to Microsoft all the software on your hard disk; a recent “security” upgrade in Windows 
Media Player required users to agree to new restrictions. But Microsoft is not alone: the KaZaa music-
sharing software is designed so that KaZaa's business partner can rent out the use of your computer to 
its clients. These malicious features are often secret, but even once you know about them it is hard to 
remove them, since you don't have the source code. 

In the past, these were isolated incidents. “Trusted computing” would make the practice pervasive. 
“Treacherous computing” is a more appropriate name, because the plan is designed to make sure your 
computer will systematically disobey you. In fact, it is designed to stop your computer from 
functioning as a general-purpose computer. Every operation may require explicit permission. 

The technical idea underlying treacherous computing is that the computer includes a digital 
encryption and signature device, and the keys are kept secret from you. Proprietary programs will use 
this device to control which other programs you can run, which documents or data you can access, and 
what programs you can pass them to. These programs will continually download new authorization 
rules through the Internet, and impose those rules automatically on your work. If you don't allow your 
computer to obtain the new rules periodically from the Internet, some capabilities will automatically 
cease to function. 

Of course, Hollywood and the record companies plan to use treacherous computing for Digital 
Restrictions Management (DRM), so that downloaded videos and music can be played only on one 
specified computer. Sharing will be entirely impossible, at least using the authorized files that you 
would get from those companies. You, the public, ought to have both the freedom and the ability to 
share these things. (I expect that someone will find a way to produce unencrypted versions, and to 
upload and share them, so DRM will not entirely succeed, but that is no excuse for the system.) 

131



Making sharing impossible is bad enough, but it gets worse. There are plans to use the same facility for 
email and documents—resulting in email that disappears in two weeks, or documents that can only be 
read on the computers in one company. 

Imagine if you get an email from your boss telling you to do something that you think is risky; a month 
later, when it backfires, you can't use the email to show that the decision was not yours. “Getting it in 
writing” doesn't protect you when the order is written in disappearing ink. 

Imagine if you get an email from your boss stating a policy that is illegal or morally outrageous, such as 
to shred your company's audit documents, or to allow a dangerous threat to your country to move 
forward unchecked. Today you can send this to a reporter and expose the activity. With treacherous 
computing, the reporter won't be able to read the document; her computer will refuse to obey her. 
Treacherous computing becomes a paradise for corruption. 

Word processors such as Microsoft Word could use treacherous computing when they save your 
documents, to make sure no competing word processors can read them. Today we must figure out the 
secrets of Word format by laborious experiments in order to make free word processors read Word 
documents. If Word encrypts documents using treacherous computing when saving them, the free 
software community won't have a chance of developing software to read them—and if we could, such 
programs might even be forbidden by the Digital Millennium Copyright Act. 

Programs that use treacherous computing will continually download new authorization rules through 
the Internet, and impose those rules automatically on your work. If Microsoft, or the US government, 
does not like what you said in a document you wrote, they could post new instructions telling all 
computers to refuse to let anyone read that document. Each computer would obey when it downloads 
the new instructions. Your writing would be subject to 1984-style retroactive erasure. You might be 
unable to read it yourself. 

You might think you can find out what nasty things a treacherous-computing application does, study 
how painful they are, and decide whether to accept them. Even if you can find this out, it would be 
foolish to accept the deal, but you can't even expect the deal to stand still. Once you come to depend on 
using the program, you are hooked and they know it; then they can change the deal. Some applications 
will automatically download upgrades that will do something different—and they won't give you a 
choice about whether to upgrade. 

Today you can avoid being restricted by proprietary software by not using it. If you run GNU/Linux 
or another free operating system, and if you avoid installing proprietary applications on it, then you are 
in charge of what your computer does. If a free program has a malicious feature, other developers in 
the community will take it out, and you can use the corrected version. You can also run free application 

132



programs and tools on nonfree operating systems; this falls short of fully giving you freedom, but many 
users do it. 

Treacherous computing puts the existence of free operating systems and free applications at risk, 
because you may not be able to run them at all. Some versions of treacherous computing would require 
the operating system to be specifically authorized by a particular company. Free operating systems 
could not be installed. Some versions of treacherous computing would require every program to be 
specifically authorized by the operating system developer. You could not run free applications on such 
a system. If you did figure out how, and told someone, that could be a crime. 

There are proposals already for US laws that would require all computers to support treacherous 
computing, and to prohibit connecting old computers to the Internet. The CBDTPA (we call it the 
Consume But Don't Try Programming Act) is one of them. But even if they don't legally force you to 
switch to treacherous computing, the pressure to accept it may be enormous. Today people often use 
Word format for communication, although this causes several sorts of problems (see “We Can Put an 
End to Word Attachments” ). If only a treacherous-computing machine can read the latest Word 129

documents, many people will switch to it, if they view the situation only in terms of individual action 
(take it or leave it). To oppose treacherous computing, we must join together and confront the 
situation as a collective choice. 

For further information about treacherous computing, see the “Trusted Computing” Frequently 
Asked Questions . 130

To block treacherous computing will require large numbers of citizens to organize. We need your help! 
Please support Defective by Design, the FSF's campaign against Digital Restrictions Management. 

Postscripts 

1. The computer security field uses the term “trusted computing” in a different way—beware of 
confusion between the two meanings. 

2. The GNU Project distributes the GNU Privacy Guard, a program that implements public-key 
encryption and digital signatures, which you can use to send secure and private email. It is useful 
to explore how GPG differs from treacherous computing, and see what makes one helpful and 
the other so dangerous. 
When someone uses GPG to send you an encrypted document, and you use GPG to decode it, 
the result is an unencrypted document that you can read, forward, copy, and even reencrypt to 
send it securely to someone else. A treacherous-computing application would let you read the 
words on the screen, but would not let you produce an unencrypted document that you could 

133

https://www.gnu.org/philosophy/no-word-attachments.html
https://www.gnu.org/philosophy/no-word-attachments.html
https://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
https://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
https://www.defectivebydesign.org/


use in other ways. GPG, a free software package, makes security features available to the users; 
they use it. Treacherous computing is designed to impose restrictions on the users; it uses them. 

3. The supporters of treacherous computing focus their discourse on its beneficial uses. What they 
say is often correct, just not important. 
Like most hardware, treacherous-computing hardware can be used for purposes which are not 
harmful. But these features can be implemented in other ways, without treacherous-computing 
hardware. The principal difference that treacherous computing makes for users is the nasty 
consequence: rigging your computer to work against you. 
What they say is true, and what I say is true. Put them together and what do you get? 
Treacherous computing is a plan to take away our freedom, while offering minor benefits to 
distract us from what we would lose. 

4. Microsoft presents Palladium as a security measure, and claims that it will protect against viruses, 
but this claim is evidently false. A presentation by Microsoft Research in October 2002 stated 
that one of the specifications of Palladium is that existing operating systems and applications will 
continue to run; therefore, viruses will continue to be able to do all the things that they can do 
today. 
When Microsoft employees speak of “security” in connection with Palladium, they do not mean 
what we normally mean by that word: protecting your machine from things you do not want. 
They mean protecting your copies of data on your machine from access by you in ways others do 
not want. A slide in the presentation listed several types of secrets Palladium could be used to 
keep, including “third party secrets” and “user secrets”—but it put “user secrets” in quotation 
marks, recognizing that this is somewhat of an absurdity in the context of Palladium. 
The presentation made frequent use of other terms that we frequently associate with the context 
of security, such as “attack,” “malicious code,” “spoofing,” as well as “trusted.” None of them 
means what it normally means. “Attack” doesn't mean someone trying to hurt you, it means you 
trying to copy music. “Malicious code” means code installed by you to do what someone else 
doesn't want your machine to do. “Spoofing” doesn't mean someone's fooling you, it means 
you're fooling Palladium. And so on. 

5. A previous statement by the Palladium developers stated the basic premise that whoever 
developed or collected information should have total control of how you use it. This would 
represent a revolutionary overturn of past ideas of ethics and of the legal system, and create an 
unprecedented system of control. The specific problems of these systems are no accident; they 
result from the basic goal. It is the goal we must reject. 

As of 2015, the main method of distributing copies of anything is over the internet, and specifically 
over the web. Nowadays, the companies that want to impose DRM on the world want it to be 
enforced by programs that talk to web servers to get copies. This means that they are determined to 

134



control your browser as well as your operating system. The way they do this is through “remote 
attestation”—a facility with which your computer can “attest” to the web server precisely what 
software it is running, such that there is no way you can disguise it. The software it would attest to 
would include the web browser (to prove it implements DRM and gives you no way to extract the 
unencrypted data), the kernel (to prove it gives no way to patch the running browser), the boot 
software (to prove it gives no way to patch the kernel when starting it), and anything else relating to the 
security of the DRM companies' dominion over you. 

Under an evil empire, the only crack by which you can reduce its effective power over you is to have a 
way to hide or disguise what you are doing. In other words, you need a way to lie to the empire's secret 
police. “Remote attestation” is a plan to force your computer to tell the truth to a company when its 
web server asks the computer whether you have liberated it. 

As of 2015, treacherous computing has been implemented for PCs in the form of the “Trusted 
Platform Module”; however, for practical reasons, the TPM has proved a total failure for the goal of 
providing a platform for remote attestation to verify Digital Restrictions Management. Thus, 
companies implement DRM using other methods. At present, “Trusted Platform Modules” are not 
being used for DRM at all, and there are reasons to think that it will not be feasible to use them for 
DRM. Ironically, this means that the only current uses of the “Trusted Platform Modules” are the 
innocent secondary uses—for instance, to verify that no one has surreptitiously changed the system in 
a computer. 

Therefore, we conclude that the “Trusted Platform Modules” available for PCs as of 2015 are not 
dangerous, and there is no immediate reason not to include one in a computer or support it in system 
software. 

This does not mean that everything is rosy. Other hardware systems for blocking the owner of a 
computer from changing the software in it are in use in some ARM PCs as well as processors in 
portable phones, cars, TVs and other devices, and these are fully as bad as we expected. 

This also does not mean that remote attestation is not a threat. If ever a device succeeds in 
implementing that, it will be a grave threat to users' freedom. The current “Trusted Platform Module” 
is harmless only because it failed in the attempt to make remote attestation feasible. We must not 
presume that all future attempts will fail too. 

As of 2022, the TPM2, a new “Trusted Platform Module”, really does support remote attestation and 
can support DRM. The threat I warned about in 2002 has become terrifyingly real. 

135



Remote attestation is actually in use by “Google SafetyNet ” (now part of the “Play Integrity 131

API ”), which verifies that the Android operating system running in a snoop-phone is an official 132

Google version. 

This malicious functionality already makes it impossible to run some bank apps on GrapheneOS , 133

which is a modified version of Android that eliminates some, though not all, of the nonfree software 
that Android normally contains. 

A free version of Android, such as Replicant, would surely encounter the same obstacle. If you value 
your freedom enough to install Replicant, you might also refuse to tolerate any nonfree app (banking 
or not) on your computers. It is nonetheless unjust for Google to snoop on whether users have 
modified their operating system and dictate based on that what users can do with it. 

- END OF CHAPTER 

136

https://developer.android.com/privacy-and-security/safetynet/attestation
https://developer.android.com/privacy-and-security/safetynet/deprecation-timeline
https://developer.android.com/privacy-and-security/safetynet/deprecation-timeline
https://grapheneos.org/articles/attestation-compatibility-guide
https://replicant.us/


Chapter XXXVIII: Who Does That Server Really 
Serve? 

by Richard Stallman 

On the Internet, proprietary software isn't the only way to lose your computing freedom. Service as a 
Software Substitute, or SaaSS, is another way to give someone else power over your computing. 

The basic point is, you can have control over a program someone else wrote (if it's free), but you can 
never have control over a service someone else runs, so never use a service where in principle running a 
program would do. 

SaaSS means using a service implemented by someone else as a substitute for running your copy of a 
program. The term is ours; articles and ads won't use it, and they won't tell you whether a service is 
SaaSS. Instead they will probably use the vague and distracting term “cloud,” which lumps SaaSS 
together with various other practices, some abusive and some OK. And they talk about “delivering a 
program by offering a service to run it.” With the explanation and examples in this page, you can tell 
whether a service is SaaSS. 

Background: How Proprietary Software Takes Away Your Freedom 

Digital technology can give you freedom; it can also take your freedom away. The first threat to our 
control over our computing came from proprietary software: software that the users cannot control 
because the owner (a company such as Apple or Microsoft) controls it. The owner often takes 
advantage of this unjust power by inserting malicious features such as spyware, back doors, and Digital 
Restrictions Management (DRM) (referred to as “Digital Rights Management” in their 134

propaganda). 

Our solution to this problem is developing free software and rejecting proprietary software. Free 
software gives you, as a user, four essential freedoms: (0) to run the program as you wish, (1) to study 
and change the source code so it does what you wish, (2) to redistribute exact copies, and (3) to 
redistribute copies of your modified versions. (See the free software definition.) 

With free software, we, the users, take back control of our computing. Proprietary software still exists, 
but we can exclude it from our lives and many of us have done so. However, we are now offered 
another tempting way to cede control over our computing: Service as a Software Substitute (SaaSS). 
For our freedom's sake, we have to reject that too. 

137

https://www.defectivebydesign.org/
https://www.defectivebydesign.org/
https://www.gnu.org/philosophy/free-sw.html


What Does Service as a Software Substitute Look Like? 

Service as a Software Substitute (SaaSS) means using a service as a substitute for running your copy of a 
program. Concretely, it means that someone sets up a network server that does certain computing 
activities—for instance, modifying a photo, translating text into another language, etc.—then invites 
users to let that server dotheir own computing for them. As a user of the server, you would send your 
data to the server, which does that computing activity on the data thus provided, then sends the results 
back to you or else acts directly on your behalf. 

To Which Activities Is the Issue of SaaSS Applicable? 

The issue of SaaSS-or-not-SaaSS is meaningful for a computing activity that is your own computing. 
What does that mean, precisely? It means that no one else is inherently involved in the activity. To 
clarify the meaning of “inherently involved,” we present a thought experiment in which we focus on 
one unspecified imaginary computing activity. 

Suppose that all parts of the activity are implemented in free software and you have copies, and you 
have whatever data you might need, as well as computers of whatever speed, functionality and capacity 
might be required. Could you (if given those prerequisites) do this particular computing activity 
entirely within those computers, not communicating with anyone else's computers? 

If you could, then the activity is essentially your own. Therefore, for your freedom's sake, you deserve to 
control it. The concept of SaaSS is applicable to such activities and not to other activities. 

For such an activity, if you carry it out by running your copies of free programs, you do control it. That 
protects the freedom you deserve. However, doing it via someone else's service would give that 
someone else control over part of your computing activity. That denies you the control you deserve, so 
we say it is unjust. We call that scenario SaaSS. 

By contrast, if due to the inherent nature of the computing to be done you couldn't possibly do that 
activity entirely in your own computers, then the activity isn't entirely your own, so the issue of SaaSS 
is not applicable to that activity. In general, these activities involve communication with others, so the 
others must be included in it. Buying something from a store is a typical example of an activity that 
needs to include some other party (the store). 

If a certain activity is essentially your own, then maintaining your full control over it requires that you 
do it using your copies of free programs, running them on computers you control. Doing it in any 
other way is SaaSS because it denies you the control you deserve. This is independent of your reasons 
for doing it in some other way. If you choose some other way because of some convenience, it is SaaSS. 

138



If it is because you can't obtain the free programs or the computer you'd need to keep control, that is 
still SaaSS. 

Using SaaSS Compared with Running Nonfree Software 

SaaSS servers wrest control from the users even more inexorably than proprietary software. With 
proprietary software, users typically get an executable file but not the source code. That makes it hard 
to study the code that is running, so it's hard to determine what the program really does, and hard to 
change it. 

With SaaSS, the users do not have even the executable file that does their computing: it is on someone 
else's server, where the users can't see or touch it. Thus it is impossible for them to ascertain what it 
really does, and impossible to change it. 

Furthermore, SaaSS automatically leads to consequences equivalent to the malicious features of certain 
proprietary software. 

For instance, some proprietary programs are “spyware”: the program sends out data about users' 
computing activities . Microsoft Windows sends information about users' activities to Microsoft. 135

Windows Media Player reports what each user watches or listens to. The Amazon Kindle reports 
which pages of which books the user looks at, and when. Angry Birds reports the user's geolocation 
history. 

Unlike proprietary software, SaaSS does not require covert code to obtain the user's data. Instead, its 
structure requires users to send their data to the server in order to use it. This has the same effect as 
spyware: the server operator gets the data—with no special effort, by the nature of SaaSS. Amy Webb, 
who intended never to post any photos of her daughter, made the mistake of using SaaSS (Instagram) 
to edit photos of her. Eventually they leaked from there . 136

Theoretically, homomorphic encryption might some day advance to the point where future SaaSS 
services might be constructed to be unable to understand some of the data that users send them. Such 
services could be set up not to snoop on users; this does not mean they will do no snooping. Also, 
snooping is only one among the secondary injustices of SaaSS. 

Some proprietary operating systems have a universal back door, permitting someone to remotely install 
software changes. For instance, Windows has a universal back door with which Microsoft can forcibly 
change any software on the machine. Nearly all portable phones have them, too. Some proprietary 
applications also have universal back doors; for instance, the Steam client for GNU/Linux allows the 
developer to remotely install modified versions. 

139

https://www.gnu.org/philosophy/proprietary-surveillance.html
https://www.gnu.org/philosophy/proprietary-surveillance.html
https://slate.com/technology/2013/09/privacy-facebook-kids-dont-post-photos-of-your-kids-on-social-media.html


With SaaSS, the server operator can change the software in use on the server. Person ought to be able to 
do this, since it's per computer; but the result is the same as using a proprietary application program 
with a universal back door: someone has the power to silently impose changes in how the user's 
computing gets done. 

It is common for SaaSS dis-services to charge a monthly fee for use. Usually one SaaSS site does not 
substitute for another, so if users become unhappy with one dis-service provider it is no easy matter to 
switch to another. When users become dependent on one, it can gouge them at will with repeated 
small price increases that over time add up to a lot . We view the loss of freedom inherent in SaaSS as 137

worse than the cost in money, but when a dis-service has you over a barrel, the cost can be painful. 
Thus, even users who don't see deeper than the bottom line should beware of SaaSS. 

SaaSS is equivalent to running proprietary software with spyware and a universal back door. It gives the 
server operator unjust power over the user, and unjust power is something we must resist. 

SaaSS and SaaS 

Originally we referred to this problematical practice as “SaaS,” which stands for “Software as a Service.” 
It's a commonly used term for setting up software on a server rather than offering copies of it to users, 
and we thought it described precisely the cases where this problem occurs. 

Subsequently we became aware that the term SaaS is sometimes used for communication services—
activities for which this issue is not applicable. In addition, the term “Software as a Service” doesn't 
explain why the practice is bad. So we coined the term “Service as a Software Substitute,” which defines 
the bad practice more clearly and says what is bad about it. 

Untangling the SaaSS Issue from the Proprietary Software Issue 

SaaSS and proprietary software lead to similar harmful results, but the mechanisms are different. With 
proprietary software, the mechanism is that you have and use a copy which is difficult and/or illegal to 
change. With SaaSS, the mechanism is that you don't have the copy that's doing your computing. 

These two issues are often confused, and not only by accident. Web developers use the vague term 
“web application” to lump the server software together with programs run on your machine in your 
browser. Some web pages install nontrivial, even large JavaScript programs into your browser without 
informing you. When these JavaScript programs are nonfree, they cause the same sort of injustice as 
any other nonfree software. Here, however, we are concerned with the issue of using the service itself. 

Many free software supporters assume that the problem of SaaSS will be solved by developing free 
software for servers. For the server operator's sake, the programs on the server had better be free; if they 

140

https://www.theguardian.com/business/2023/nov/05/cloud-service-provider-consumer-prices-netflix-microsoft
https://www.theguardian.com/business/2023/nov/05/cloud-service-provider-consumer-prices-netflix-microsoft
https://www.gnu.org/philosophy/javascript-trap.html


are proprietary, their developers/owners have power over the server. That's unfair to the server 
operator, and doesn't help the server's users at all. But if the programs on the server are free, that 
doesn't protect the server's users from the effects of SaaSS. These programs liberate the server operator, 
but not the server's users. 

Releasing the server software source code does benefit the community: it enables suitably skilled users 
to set up similar servers, perhaps changing the software. We recommend using the GNU Affero GPL as 
the license for programs often used on servers. 

But none of these servers would give you control over computing you do on it, unless it's your server 
(one whose software load you control, regardless of whether the machine is your property). It may be 
OK to trust your friend's server for some jobs, just as you might let your friend maintain the software 
on your own computer. Outside of that, all these servers would be SaaSS for you. SaaSS always subjects 
you to the power of the server operator, and the only remedy is, Don't use SaaSS! Don't use someone 
else's server to do your own computing on data provided by you. 

This issue demonstrates the depth of the difference between “open” and “free.” Source code that is 
open source is, nearly always, free. However, the idea of an “open software” service , meaning one 138

whose server software is open source and/or free, fails to address the issue of SaaSS. 

Services are fundamentally different from programs, and the ethical issues that services raise are 
fundamentally different from the issues that programs raise. To avoid confusion, we avoid describing a 
service as “free” or “proprietary.” 

Distinguishing SaaSS from Other Network Services 

Which online services are SaaSS? The clearest example is a translation service, which translates (say) 
English text into Spanish text. Translating a text for you is computing that is purely yours. You could 
do it by running a program on your own computer, if only you had the right program. (To be ethical, 
that program should be free.) The translation service substitutes for that program, so it is Service as a 
Software Substitute, or SaaSS. Since it denies you control over your computing, it does you wrong. 

Another clear example is using a service such as Flickr or Instagram to modify a photo. Modifying 
photos is an activity that people have done in their own computers for decades; doing it in a server you 
don't control, rather than your own computer, is SaaSS. 

Rejecting SaaSS does not mean refusing to use any network servers run by anyone other than you. 
Most servers are not SaaSS because the jobs they do are some sort of communication with visitors, 
rather than each visitor's own computing. 

141

https://www.gnu.org/licenses/license-recommendations.html
https://www.gnu.org/philosophy/free-open-overlap.html
https://opendefinition.org/ossd/
https://www.gnu.org/philosophy/network-services-arent-free-or-nonfree.html
https://www.gnu.org/philosophy/network-services-arent-free-or-nonfree.html


The original idea of web servers wasn't to do computing for you, a visitor; it was to publish 
information for you to access. Even today this is what most web sites do, and it doesn't raise the SaaSS 
issue, because accessing someone's published information on a web site isn't a matter of your own 
computing. Neither is use of a blog site to publish your own works, or using a microblogging service 
such as Mastodon, or StatusNet, or Ex-Twitter. (These services may or may not have other problems, 
depending on details.) The same goes for other communication not meant to be private, such as chat 
groups. 

In its essence, social networking is a form of communication and publication, not SaaSS. However, a 
service whose main facility is social networking can have features or extensions which are SaaSS. 

If a service is not SaaSS, that does not mean it is OK. There are other ethical issues about services. For 
instance, Facebook requires running nonfree JavaScript code, and it gives users a misleading impression 
of privacy while luring them into baring their lives to Facebook. Those are important issues, but 
distinct from the SaaSS issue. 

Services such as search engines collect data from around the web and let you examine it. Looking 
through their collection of data isn't your own computing in the usual sense—you didn't provide that 
collection—so using such a service to search the web is not SaaSS. However, using someone else's server 
to implement a search facility for your own site is SaaSS. 

Purchasing online is not SaaSS, because the computing isn't your own activity; rather, it is done jointly 
by and for you and the store. The real issue in online shopping is whether you trust the other party 
with your money and other personal information (starting with your name). 

Repository sites such as Savannah and SourceForge are not inherently SaaSS, because a repository's job 
is publication of data supplied to it. 

Some sites offer multiple services, and if one is not SaaSS, another may be SaaSS. For instance, the main 
service of Facebook is social networking, and that is not SaaSS; however, it supports third-party 
applications, some of which are SaaSS. Flickr's main service is distributing photos, which is not SaaSS, 
but it also has features for editing photos, which is SaaSS. Likewise, using Instagram to post a photo is 
not SaaSS, but using it to transform the photo is SaaSS. 

Google Docs shows how complex the evaluation of a single service can become. It invites people to edit 
a document by running a large nonfree JavaScript program, clearly unjust, but not SaaSS. However, it 
offers an API for uploading and downloading documents in standard formats. A free software editor 
can do so through this API. (Whether it is possible to get an account for Google Docs without running 
some nonfree JavaScript code, we don't know.) Anyway, this usage scenario is not SaaSS, because it uses 
Google Docs as a mere repository. Handing your work data to a company is bad, but that is a matter of 

142

https://www.gnu.org/philosophy/javascript-trap.html


privacy, not SaaSS; depending on a service for access to your data is bad, but that is a matter of risk, not 
SaaSS. 

On the other hand, using Google Docs for converting document formats is SaaSS, because it's 
something you could have done by running a suitable program (free, one hopes) in your own 
computer. 

Using Google Docs through a free editor is rare, of course. Most often, people edit their Google Docs 
documents with the nonfree JavaScript program it sends, which is bad like any nonfree program. This 
scenario might involve SaaSS, too; that depends on what part of the editing is done in the JavaScript 
program and what part in the server. We don't know, but since SaaSS and proprietary software do 
similar wrong to the user, we can judge the whole scenario morally without knowing which part is 
which. 

Publishing via someone else's repository does not raise privacy issues, but publishing through Google 
Docs has a special problem: it is impossible even to view the text of a Google Docs document in a 
browser without running the nonfree JavaScript code. Thus, you should not use Google Docs to 
publish anything—but the reason is not a matter of SaaSS. 

The IT industry discourages users from making these distinctions. That's what the buzzword “cloud 
computing” is for. This term is so nebulous that it could refer to almost any use of the Internet. It 
includes SaaSS as well as many other network usage practices. In any given context, an author who 
writes “cloud” (if a technical person) probably has a specific meaning in mind, but usually does not 
explain that in other articles the term has other specific meanings. The term leads people to generalize 
about practices they ought to judge separately. 

If “cloud computing” has a meaning, it is not a way of doing computing, but rather a way of thinking 
about computing: a devil-may-care approach which says, “Don't ask questions. Don't worry about 
who controls your computing or who holds your data. Don't check for a hook hidden inside our 
service before you swallow it. Trust companies without hesitation.” In other words, “Be a sucker.” A 
cloud in the mind is an obstacle to clear thinking. For the sake of clear thinking about computing, let's 
avoid the term “cloud.” 

Renting a Server Distinguished from SaaSS 

If you rent a server (real or virtual), whose software load you have control over, that's not SaaSS. In 
SaaSS, someone else decides what software runs on the server and therefore controls the computing it 
does for you. In the case where you install the software on the server, you control what computing it 
does for you. Thus, the rented server is virtually your computer. For this issue, it counts as yours. 

143



The data on the rented remote server is less secure than if you had the server at home, but that is a 
separate issue from SaaSS. 

This kind of server rental is sometimes called “IaaS,” but that term fits into a conceptual structure that 
downplays the issues that we consider important. 

When the User Is a Collective Activity Or an Organization 

So far we have explained how SaaSS applies to an individual's computing. For those cases, we have 
clarified the concept of SaaSS pretty thoroughly. SaaSS is also an issue for computing done by a group 
activity, which may be informal (such as developing a free program often is), or formal (a charity like 
the FSF or a business). It is basically the same concept, but we have not clarified the boundaries for all 
sorts of situations. 

Here are some line we have drawn so far. 

The collective activity is likely to have web pages, which will be hosted on some web server. That 
server's treatment of visitors to its pages raises the usual moral issues: if they send nonfree JavaScript 
code, that is an injustice, and if they offer to do the visitor's computing, that is SaaSS. 

However, the web server's own operations can also raise the issue of SaaSS with the collective activity as 
victim. A web server often offers visitors a way to search through the web pages; how does it implement 
that? If the collective activity runs a free program on its own computer to find the matches for the 
search string, the collective activity has control of this, as it should. But if it asks Google (or any other 
search engine) where the matches are and displays what is found, the collective activity is relying on 
SaaSS and forfeiting its freedom. 

Using a joint project's servers to work on that project isn't SaaSS because the computing you do in this 
way isn't your own—it is the project's computing. For instance, if you edit pages on Wikipedia, you are 
not doing your own computing; rather, you are collaborating in Wikipedia's computing. Wikipedia 
controls its own servers, but organizations as well as individuals encounter the problem of SaaSS if they 
do their computing in someone else's server. 

Use of simple software repositories is not SaaSS because most of the actual work (as distinguished from 
redistribution) is done in the contributors' computers. However, when the repository starts doing 
other kinds of computing work for the users, such as running tests, that starts to cross the line. When 
the users are contributing to the project, so the work is the project's work rather than the contributor's 
work, that still is not SaaSS for the users. But it may be SaaSS for the project. However, if the testing 
means running the programs that the project develops, it is not SaaSS because the project does control 
the crucial software being run. 

144



Dealing with the SaaSS Problem 

Only a small fraction of all web sites do SaaSS; most don't raise the issue. But what should we do about 
the ones that raise it? 

For the simple case, where you are doing your own computing on data in your own hands, the solution 
is simple: use your own copy of a free software application. Do your text editing with your copy of a 
free text editor such as GNU Emacs or a free word processor. Do your photo editing with your copy of 
free software such as GIMP. What if there is no free program available? A proprietary program or 
SaaSS would take away your freedom, so you shouldn't use those. You can contribute your time or 
your money to development of a free replacement. 

What about collaborating with other individuals as a group? It may be hard to do this at present 
without using a server, and your group may not know how to run its own server. If you use someone 
else's server, at least don't trust a server run by a company. A mere contract as a customer is no 
protection unless you could detect a breach and could really sue, and the company probably writes its 
contracts to permit a broad range of abuses. The state can subpoena your data from the company along 
with everyone else's, as Obama has done to phone companies, supposing the company doesn't 
volunteer them like the US phone companies that illegally wiretapped their customers for Bush. If you 
must use a server, use a server whose operators give you a basis for trust beyond a mere commercial 
relationship. 

However, on a longer time scale, we can create alternatives to using servers. For instance, we can create a 
peer-to-peer program through which collaborators can share data encrypted. The free software 
community should develop distributed peer-to-peer replacements for important “web applications.” It 
may be wise to release them under the GNU Affero GPL, since they are likely candidates for being 
converted into server-based programs by someone else. The GNU project is looking for volunteers to 
work on such replacements. We also invite other free software projects to consider this issue in their 
design. 

In the meantime, if a company invites you to use its server to do your own computing tasks, don't 
yield; don't use SaaSS. Don't buy or install “thin clients,” which are simply computers so weak they 
make you do the real work on a server, unless you're going to use them with your server. Use a real 
computer and keep your data there. Do your own computing with your own copy of a free program, 
for your freedom's sake. 

- END OF CHAPTER 

145

https://www.gnu.org/licenses/why-affero-gpl.html
https://www.gnu.org/


Chapter XXXIX: Words to Avoid (or Use with 
Care) Because They Are Loaded or Confusing 

There are a number of words and phrases that we recommend avoiding, or avoiding in certain contexts 
and usages. Some are ambiguous or misleading; others presuppose a viewpoint that we disagree with, 
and we hope you disagree with it too. 

“Ad-blocker” 

When the purpose of some program is to block advertisements, “ad-blocker” is a good term for it. 
However, the GNU browser IceCat blocks advertisements that track the user as consequence of 
broader measures to prevent surveillance by web sites. This is not an “ad-blocker,” this is surveillance 
protection. 

“Access” 

It is a common misunderstanding to think free software means that the public has “access” to a 
program. That is not what free software means. 

The criterion for free software is not about who has “access” to the program; the four essential 
freedoms concern what a user that has a copy of the program is allowed to do with it. For instance, 
freedom 2 says that that user is free to make another copy and give or sell it to you. But no user is 
obligated to do that for you; you do not have a right to demand a copy of that program from any user. 

In particular, if you write a program yourself and never offer a copy to anyone else, that program is free 
software albeit in a trivial way, because every user that has a copy has the four essential freedoms (since 
the only such user is you). 

In practice, when many users have copies of a program, someone is sure to post it on the internet, 
giving everyone access to it. We think people ought to do that, if the program is useful. But that isn't a 
requirement of free software. 

There is one specific point in which a question of having access is directly pertinent to free software: 
the GNU GPL permits giving a particular user access to download a program's source code as a 
substitute for physically giving that user a copy of the source. This applies to the special case in which 
the user already has a copy of the program in non-source form. 

146

https://www.gnu.org/philosophy/free-sw.html


Instead of with free software, the public has access to the program, we say, with free software, 
the users have the essential freedoms and with free software, the users have control of what 
the program does for them. 

“Alternative” 

We don't describe free software in general as an “alternative” to proprietary, because that word 
presumes all the “alternatives” are legitimate and each additional one makes users better off. In effect, it 
assumes that free software ought to coexist with software that does not respect users' freedom. 

We believe that distribution as free software is the only ethical way to make software available for others 
to use. The other methods, nonfree software and Service as a Software Substitute subjugate their users. 
We do not think it is good to offer users those “alternatives” to free software. 

Special circumstances can drive users toward running one particular program for a certain job. For 
instance, when a web page sends JavaScript client code to the user's browser, that drives users toward 
running that specific client program rather than any possible other. In such a case, there is a reason to 
describe any other code for that job as an alternative. 

“Artificial Intelligence” 

The moral panic over ChatGPT has led to confusion because people often speak of it as “artificial 
intelligence.” Is ChatGPT properly described as artificial intelligence? Should we call it that? Professor 
Sussman of the MIT Artificial Intelligence Lab argues convincingly that we should not. 

Normally, “intelligence” means having knowledge and understanding, at least about some kinds of 
things. A true artificial intelligence should have some knowledge and understanding. General artificial 
intelligence would be able to know and understand about all sorts of things; that does not exist, but we 
do have systems of limited artificial intelligence which can know and understand in certain limited 
fields. 

By contrast, ChatGPT knows nothing and understands nothing. Its output is merely smooth 
babbling. Anything it states or implies about reality is fabrication (unless “fabrication” implies more 
understanding than that system really has). Seeking a correct answer to any real question in ChatGPT 
output is folly, as many have learned to their dismay. 

That is not a matter of implementation details. It is an inherent limitation due to the fundamental 
approach these systems use . 139

Here is how we recommend using terminology for systems based on trained neural networks: 

147

https://www.gnu.org/philosophy/free-software-even-more-important.html
https://www.gnu.org/philosophy/who-does-that-server-really-serve.html
https://www.mindprison.cc/p/the-question-that-no-llm-can-answer
https://www.mindprison.cc/p/the-question-that-no-llm-can-answer


• “Artificial intelligence” is a suitable term for systems that have understanding and knowledge 
within some domain, whether small or large. 

• “Bullshit generators” is a suitable term for large language models (“LLMs”) such as ChatGPT, 
that generate smooth-sounding verbiage that appears to assert things about the world, without 
understanding that verbiage semantically. This conclusion has received support from the paper 
titled ChatGPT is bullshit  by Hicks et al., (2024). 140

• “Generative systems” is a suitable term for systems that generate artistic works for which “truth” 
and “falsehood” are not applicable. 

Those three categories of jobs are mostly implemented, nowadays, with “machine learning systems.” 
That means they work with data consisting of many numeric values, and adjust those numbers based 
on “training data.” A machine learning system may be a bullshit generator, a generative system, or 
artificial intelligence. 

Most machine learning systems today are implemented as “neural network systems” (“NNS”), 
meaning that they work by simulating a network of “neurons”—highly simplified models of real nerve 
cells. However, there are other kinds of machine learning which work differently. 

There is a specific term for the neural-network systems that generate textual output which is plausible 
in terms of grammar and diction: “large language models” (“LLMs”). These systems cannot begin to 
grasp the meanings of their textual outputs, so they are invariably bullshit generators, never artificial 
intelligence. 

There are systems which use machine learning to recognize specific important patterns in data. Their 
output can reflect real knowledge (even if not with perfect accuracy)—for instance, whether an image 
of tissue from an organism shows a certain medical condition, whether an insect is a bee-eating Asian 
hornet , or whether a toddler may be at risk of becoming autistic . Scientists validate the output by 141 142

comparing the system's judgment against experimental tests. That justifies referring to these systems as 
“artificial intelligence.” Likewise the systems that antisocial media use to decide what to show or 
recommend to a user, since the companies validate that they actually understand what will increase 
“user engagement,” even though that manipulation of users may be harmful to them and to society as a 
whole. 

Businesses and governments use similar systems to evaluate how to deal with potential clients or people 
accused of various things. These evaluation results are often validated carelessly and the result can be 
systematic injustice. But since it purports to understand, it qualifies at least as attempted artificial 
intelligence. 

148

https://link.springer.com/article/10.1007/s10676-024-09775-5
https://www.theguardian.com/environment/2024/apr/03/early-warning-system-track-asian-hornets-university-of-exeter
https://www.theguardian.com/environment/2024/apr/03/early-warning-system-track-asian-hornets-university-of-exeter
https://www.theguardian.com/society/article/2024/aug/19/ai-may-help-experts-identify-toddlers-at-risk-of-autism-researchers-say


As that example shows, artificial intelligence can be broken, or systematically biased, or work badly, just 
as natural intelligence can. Here we are concerned with whether specific instances fit that term, not 
with whether they do good or harm. 

There are also systems of artificial intelligence which solve math problems , using machine learning 143

to explore the space of possible solutions to find a valid solution. They qualify as artificial intelligence 
because they test the validity of a candidate solution using rigorous mathematical methods. 

When bullshit generators output text that appears to make factual statements but describe nonexistent 
people, places, and things, or events that did not happen, it is fashionable to call those statements 
“hallucinations” or say that the system “made them up.” That fashion spreads a conceptual confusion, 
because it presumes that the system has some sort of understanding of the meaning of its output, and 
that its understanding was mistaken in a specific case. 

That presumption is false: these systems have no semantic understanding whatsoever. 

“Assets” 

To refer to published works as “assets,” or “digital assets,” is even worse than calling them “content”—it 
dismisses their value to society aside from commercial value. 

“BSD-style” 

The expression “BSD-style license” leads to confusion because it lumps together licenses that have 
important differences. For instance, the original BSD license with the advertising clause is incompatible 
with the GNU General Public License, but the revised BSD license is compatible with the GPL. 

To avoid confusion, it is best to name the specific license in question and avoid the vague term “BSD-
style.” 

“Closed” 

Describing nonfree software as “closed” clearly refers to the term “open source.” In the free software 
movement, we do not want to be confused with the open source camp, so we are careful to avoid 
saying things that would encourage people to lump us in with them. For instance, we avoid describing 
nonfree software as “closed.” We call it “nonfree” or “proprietary”. 

“Cloud Computing” 

The term “cloud computing” (or just “cloud,” in the context of computing) is a marketing buzzword 
with no coherent meaning. It is used for a range of different activities whose only common 

149

https://www.theguardian.com/technology/article/2024/jul/25/google-deepmind-takes-step-closer-to-cracking-top-level-maths
https://www.gnu.org/licenses/bsd.html
https://www.gnu.org/licenses/bsd.html
https://www.gnu.org/licenses/license-list.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/categories.html#ProprietarySoftware


characteristic is that they use the Internet for something beyond transmitting files. Thus, the term 
spreads confusion. If you base your thinking on it, your thinking will be confused (or, could we say, 
“cloudy”?). 

When thinking about or responding to a statement someone else has made using this term, the first 
step is to clarify the topic. What scenario is the statement about? What is a good, clear term for that 
scenario? Once the topic is clearly formulated, coherent thought about it becomes possible. 

One of the many meanings of “cloud computing” is storing your data in online services. In most 
scenarios, that is foolish because it exposes you to surveillance. 

Another meaning (which overlaps that but is not the same thing) is Service as a Software Substitute, 
which denies you control over your computing. You should never use SaaSS. 

Another meaning is renting a remote physical server, or virtual server. These practices are ok under 
certain circumstances. 

Another meaning is accessing your own server from your own mobile device. That raises no particular 
ethical issues. 

The NIST definition of “cloud computing” mentions three scenarios that raise different ethical issues: 
Software as a Service, Platform as a Service, and Infrastructure as a Service. However, that definition 
does not match the common use of “cloud computing,” since it does not include storing data in online 
services. Software as a Service as defined by NIST overlaps considerably with Service as a Software 
Substitute, which mistreats the user, but the two concepts are not equivalent. 

These different computing practices don't even belong in the same discussion. The best way to avoid 
the confusion the term “cloud computing” spreads is not to use the term “cloud” in connection with 
computing. Talk about the scenario you mean, and call it by a specific term. 

Curiously, Larry Ellison, a proprietary software developer, also noted the vacuity of the term “cloud 
computing.” He decided to use the term anyway because, as a proprietary software developer, he isn't 
motivated by the same ideals as we are. 

“Commercial” 

Please don't use “commercial” as a synonym for “nonfree.” That confuses two entirely different issues. 

A program is commercial if it is developed as a business activity. A commercial program can be free or 
nonfree, depending on its manner of distribution. Likewise, a program developed by a school or an 

150

https://www.guardian.co.uk/commentisfree/2011/apr/25/hackers-spooks-cloud-antiauthoritarian-dream
https://www.gnu.org/philosophy/who-does-that-server-really-serve.html
https://csrc.nist.gov/pubs/sp/800/145/final
https://www.cnet.com/culture/oracles-ellison-nails-cloud-computing/
https://www.cnet.com/culture/oracles-ellison-nails-cloud-computing/


individual can be free or nonfree, depending on its manner of distribution. The two questions—what 
sort of entity developed the program and what freedom its users have—are independent. 

In the first decade of the free software movement, free software packages were almost always 
noncommercial; the components of the GNU/Linux operating system were developed by individuals 
or by nonprofit organizations such as the FSF and universities. Later, in the 1990s, free commercial 
software started to appear. 

Free commercial software is a contribution to our community, so we should encourage it. But people 
who think that “commercial” means “nonfree” will tend to think that the “free commercial” 
combination is self-contradictory, and dismiss the possibility. Let's be careful not to use the word 
“commercial” in that way. 

“Compensation” 

To speak of “compensation for authors” in connection with copyright carries the assumptions that (1) 
copyright exists for the sake of authors and (2) whenever we read something, we take on a debt to the 
author which we must then repay. The first assumption is simply false, and the second is outrageous. 

“Compensating the rights-holders” adds a further swindle: you're supposed to imagine that means 
paying the authors, and occasionally it does, but most of the time it means a subsidy for the same 
publishing companies that are pushing unjust laws on us. 

“Consume” 

“Consume” refers to what we do with food: we ingest it, after which the food as such no longer exists. 
By analogy, we employ the same word for other products whose use uses them up. Applying it to 
durable goods, such as clothing or appliances, is a stretch. Applying it to published works (programs, 
recordings on a disk or in a file, books on paper or in a file), whose nature is to last indefinitely and 
which can be run, played or read any number of times, is stretching the word so far that it snaps. 
Playing a recording, or running a program, does not consume it. 

Those who use “consume” in this context will say they don't mean it literally. What, then, does it 
mean? It means to regard copies of software and other works from a narrow economistic point of view. 
“Consume” is associated with the economics of material commodities, such as the fuel or electricity 
that a car uses up. Gasoline is a commodity, and so is electricity. Commodities are fungible: there is 
nothing special about a drop of gasoline that your car burns today versus another drop that it burned 
last week. 

151

https://www.gnu.org/philosophy/misinterpreting-copyright.html


What does it mean to think of works of authorship as a commodity, with the assumption that there is 
nothing special about any one story, article, program, or song? That is the twisted viewpoint of the 
owner or the accountant of a publishing company, someone who doesn't appreciate the published 
works as such. It is no surprise that proprietary software developers would like you to think of the use 
of software as a commodity. Their twisted viewpoint comes through clearly in this article, which also 
refers to publications as “content.” 

The narrow thinking associated with the idea that we “consume content” paves the way for laws such 
as the DMCA that forbid users to break the Digital Restrictions Management (DRM) facilities in 
digital devices. If users think what they do with these devices is “consume,” they may see such 
restrictions as natural. 

It also encourages the acceptance of “streaming” services, which use DRM to perversely limit listening 
to music, or watching video, to squeeze those activities into the assumptions of the word “consume.” 

Why is this perverse usage spreading? Some may feel that the term sounds sophisticated, but rejecting it 
with cogent reasons can appear even more sophisticated. Some want to generalize about all kinds of 
media, but the usual English verbs (“read,” “listen to,” “watch”) don't do this. Others may be acting 
from business interests (their own, or their employers'). Their use of the term in prestigious forums 
gives the impression that it's the “correct” term. 

To speak of “consuming” music, fiction, or any other artistic works is to treat them as commodities 
rather than as art. Do we want to think of published works that way? Do we want to encourage the 
public to do so? 

Those who answer no, please join me in shunning the term “consume” for this. 

What to use instead? You can use specific verbs such as “read,” “listen to,” “watch” or “look at,” since 
they help to restrain the tendency to overgeneralize. 

If you insist on generalizing, you can use the expression “attend to,” which requires less of a stretch 
than “consume.” For a work meant for practical use, “use” is best. 

See also the following entry. 

“Consumer” 

The term “consumer,” when used to refer to the users of computing, is loaded with assumptions we 
should reject. Some come from the idea that using the program “consumes” the program (see the 

152

https://www.businessinsider.com/former-google-exec-launches-sourcepoint-with-10-million-series-a-funding-2015-6
https://defectivebydesign.org/


previous entry), which leads people to impose on copiable digital works the economic conclusions that 
were drawn about uncopiable material products. 

In addition, describing the users of software as “consumers” refers to a framing in which people are 
limited to selecting between whatever “products” are available in the “market.” There is no room in 
this framing for the idea that users can directly exercise control over what a program does. 

To describe people who are not limited to passive use of works, we suggest terms such as “individuals” 
and “citizens,” rather than “consumers.” 

This problem with the word “consumer” has been noted before. 

“Content” 

If you want to describe a feeling of comfort and satisfaction, by all means say you are “content,” but 
using the word as a noun to describe works and communications through which people have expressed 
themselves adopts an attitude you might rather avoid: it treats them as a commodity whose purpose is 
to fill a box and make money. In effect, it disparages all the works by focusing on the box that is full. To 
avoid taking that attitude, you can call them “works,” “publications,” “messages,” “communications,” 
as well as various other words that are more specific. 

Those who use the term “content” are often the publishers that push for increased copyright power in 
the name of the authors (“creators,” as they say) of the works. The term “content” reveals their real 
attitude towards these works and their authors. 

The same word, “content,” has another usage which is different enough in meaning that it does not 
raise this issue. It appears in the expression, “technical content.” The usage of that expression generally 
relates to one specific document or publication, and refers to “the information in that one.” This usage 
doesn't embody any attitude towards publications and communications in general. 

Likewise, the word “contents” does not raise this issue. It is a form of the word “content,” but it has a 
different meaning. Talking about the “contents” of a file or the “table of contents” of a book does not 
imply an attitude towards files in general or books in general. 

We first condemned this usage of “content” in 2002. Since then, Tom Chatfield recognized the same 
point in The Guardian: 

Content itself is beside the point—as the very use of words like content suggests. The moment you 
start labelling every single piece of writing in the world “content,” you have conceded its 
interchangeability: its primary purpose as mere grist to the metrical mill. 

153

https://www.gnu.org/philosophy/free-software-even-more-important.html
https://www.theguardian.com/commentisfree/2013/aug/11/capitalism-language-raymond-williams
https://www.theguardian.com/culture/2016/aug/02/how-to-deal-with-trump-trolls-online


In other words, “content” reduces publications and writings to a sort of pap, fit to be metered and 
piped through the “tubes” of the internet.  

Later, Peter Bradshaw noticed it too. 

This is what happens when studios treat movies as pure, undifferentiated corporate “content,” a 
Gazprom pipeline of superhero mush which can be turned off when the accountants say that it makes 
sense to do so. 

Martin Scorsese condemned the attitude of “content” in regard to films. 

The attitude implied by “content” is illustrated pointedly in this critical description of the 
development path of platforms run by people who base their thinking on that concept. 

The article uses this word over and over, along with “consume” and “creators.” Perhaps that is meant to 
illustrate the way those people like to think. 

See also Courtney Love's open letter to Steve Case and search for “content provider” in that page. Alas, 
Ms. Love is unaware that the term “intellectual property” is also biased and confusing. 

However, as long as other people use the term “content provider,” political dissidents can well call 
themselves “malcontent providers.” 

The term “content management” takes the prize for vacuity. “Content” means “some sort of 
information,” and “management” in this context means “doing something with it.” So a “content 
management system” is a system for doing something to some sort of information. Nearly all programs 
fit that description. 

In most cases, that term really refers to a system for updating pages on a web site. For that, we 
recommend the term “web site revision system” or “website revision system” (WRS). 

“Copyright Owner” 

Copyright is an artificial privilege, handed out by the state to achieve a public interest and lasting a 
period of time—not a natural right like owning a house or a shirt. Lawyers used to recognize this by 
referring to the recipient of that privilege as a “copyright holder.” 

A few decades ago, copyright holders began trying to reduce awareness of this point. In addition to 
citing frequently the bogus concept of “intellectual property,” they also started calling themselves 
“copyright owners.” Please join us in resisting by using the traditional term “copyright holders” instead. 

154

https://www.theguardian.com/film/2022/aug/03/tax-concerns-axed-batgirl-but-studios-will-suffer-if-they-become-too-cynical
https://tedgioia.substack.com/p/14-warning-signs-that-you-are-living
https://anildash.com/2022/02/09/the-stupid-tech-content-culture-cycle/
https://anildash.com/2022/02/09/the-stupid-tech-content-culture-cycle/
https://www.salon.com/2000/06/14/love_7/


“Creative Commons licensed” 

The most important licensing characteristic of a work is whether it is free. Creative Commons 
publishes seven licenses; three are free (CC BY, CC BY-SA and CC0) and the rest are nonfree. Thus, to 
describe a work as “Creative Commons licensed” fails to say whether it is free, and suggests that the 
question is not important. The statement may be accurate, but the omission is harmful. 

To encourage people to pay attention to the most important distinction, always specify which Creative 
Commons license is used, as in “licensed under CC BY-SA.” If you don't know which license a certain 
work uses, find out and then make your statement. 

“Creator” 

The term “creator” as applied to authors implicitly compares them to a deity (“the creator”). The term 
is used by publishers to elevate authors' moral standing above that of ordinary people in order to justify 
giving them increased copyright power, which the publishers can then exercise in their name. We 
recommend saying “author” instead. However, in many cases “copyright holder” is what you really 
mean. These two terms are not equivalent: often the copyright holder is not the author. 

“Digital Goods” 

The term “digital goods,” as applied to copies of works of authorship, identifies them with physical 
goods—which cannot be copied, and which therefore have to be manufactured in quantity and sold. 
This metaphor encourages people to judge issues about software or other digital works based on their 
views and intuitions about physical goods. It also frames issues in terms of economics, whose shallow 
and limited values don't include freedom and community. 

“Digital Locks” 

“Digital locks” is used to refer to Digital Restrictions Management by some who criticize it. The 
problem with this term is that it fails to do justice to the badness of DRM. The people who adopted 
that term did not think it through. 

Locks are not necessarily oppressive or bad. You probably own several locks, and their keys or codes as 
well; you may find them useful or troublesome, but they don't oppress you, because you can open and 
close them. Likewise, we find encryption invaluable for protecting our digital files. That too is a kind of 
digital lock that you have control over. 

DRM is like a lock placed on you by someone else, who refuses to give you the key—in other words, 
like handcuffs. Therefore, the proper metaphor for DRM is “digital handcuffs,” not “digital locks.” 

155

https://www.theguardian.com/technology/2015/may/01/encryption-wont-work-if-it-has-a-back-door-only-the-good-guys-have-keys-to-


A number of opposition campaigns have chosen the unwise term “digital locks”; to get things back on 
the right track, we must firmly insist on correcting this mistake. The FSF can support a campaign that 
opposes “digital locks” if we agree on the substance; however, when we state our support, we 
conspicuously replace the term with “digital handcuffs” and say why. 

“Digital Rights Management” 

“Digital Rights Management” (abbreviated “DRM”) refers to technical mechanisms designed to 
impose restrictions on computer users. The use of the word “rights” in this term is propaganda, 
designed to lead you unawares into seeing the issue from the viewpoint of the few that impose the 
restrictions, and ignoring that of the general public on whom these restrictions are imposed. 

Good alternatives include “Digital Restrictions Management,” and “digital handcuffs.” 

Please sign up to support our campaign to abolish DRM. 

“Ecosystem” 

It is inadvisable to describe the free software community, or any human community, as an “ecosystem,” 
because that word implies the absence of ethical judgment. 

The term “ecosystem” implicitly suggests an attitude of nonjudgmental observation: don't ask how 
what should happen, just study and understand what does happen. In an ecosystem, some organisms 
consume other organisms. In ecology, we do not ask whether it is right for an owl to eat a mouse or for 
a mouse to eat a seed, we only observe that they do so. Species' populations grow or shrink according to 
the conditions; this is neither right nor wrong, merely an ecological phenomenon, even if it goes so far 
as the extinction of a species. 

By contrast, beings that adopt an ethical stance towards their surroundings can decide to preserve 
things that, without their intervention, might vanish—such as civil society, democracy, human rights, 
peace, public health, a stable climate, clean air and water, endangered species, traditional arts…and 
computer users' freedom. 

“FLOSS” 

The term “FLOSS,” meaning “Free/Libre and Open Source Software,” was coined as a way to be 
neutral between free software and open source. If neutrality is your goal, “FLOSS” is the best way to be 
neutral. But if you want to show you stand for freedom, don't use a neutral term. 

156

https://defectivebydesign.org/
https://www.gnu.org/philosophy/floss-and-foss.html
https://www.gnu.org/philosophy/floss-and-foss.html


“For free” 

If you want to say that a program is free software, please don't say that it is available “for free.” That 
term specifically means “for zero price.” Free software is a matter of freedom, not price. 

Free software copies are often available for free—for example, by downloading via FTP. But free 
software copies are also available for a price on CD-ROMs; meanwhile, proprietary software copies are 
occasionally available for free in promotions, and some proprietary packages are normally available at 
no charge to certain users. 

To avoid confusion, you can say that the program is available “as free software.” 

“FOSS” 

The term “FOSS,” meaning “Free and Open Source Software,” was coined as a way to be neutral 
between free software and open source, but it doesn't really do that. If neutrality is your goal, “FLOSS” 
is better. But if you want to show you stand for freedom, don't use a neutral term. 

Instead of FOSS, we say, free software or free (libre) software. 

“Freely available” 

Don't use “freely available software” as a synonym for “free software.” The terms are not equivalent. 
Software is “freely available” if anyone can easily get a copy. “Free software” is defined in terms of the 
freedom of users that have a copy of it. These are answers to different questions. 

“Freemium” 

The confusing term “freemium” is used in marketing to describe nonfree software whose standard 
version is gratis, with paid nonfree add-ons available. 

Using this term works against the free software movement, because it leads people to think of “free” as 
meaning “zero price.” 

“Free-to-play” 

The confusing term “free-to-play” (acronym “F2P”) is used in marketing to describe nonfree games 
which don't require a payment before a user starts to play. In many of these games, doing well in the 
game requires paying later, so the term “gratis-to-start” is a more accurate description. 

157

https://www.gnu.org/philosophy/floss-and-foss.html
https://www.gnu.org/philosophy/floss-and-foss.html


Using this term works against the free software movement, because it leads people to think of “free” as 
meaning “zero price.” 

“Freeware” 

Please don't use the term “freeware” as a synonym for “free software.” The term “freeware” was used 
often in the 1980s for programs released only as executables, with source code not available. Today it 
has no particular agreed-on definition. 

When using languages other than English, please avoid borrowing English terms such as “free 
software” or “freeware.” It is better to translate the term “free software” into your language. 

By using a word in your own language, you show that you are really referring to freedom and not just 
parroting some mysterious foreign marketing concept. The reference to freedom may at first seem 
strange or disturbing to your compatriots, but once they see that it means exactly what it says, they will 
really understand what the issue is. 

“Give away software” 

It's misleading to use the term “give away” to mean “distribute a program as free software.” This 
locution has the same problem as “for free”: it implies the issue is price, not freedom. One way to avoid 
the confusion is to say “release as free software.” 

“Google” 

Please avoid using the term “google” as a verb, meaning to search for something on the internet. 
“Google” is just the name of one particular search engine among others. We suggest to use the term 
“search the web” or (in some contexts) just “search.” Try to use a search engine that respects your 
privacy; for instance, DuckDuckGo claims not to track its users. (There is no way for outsiders to 
verify claims of that kind.) 

“Hacker” 

A hacker is someone who enjoys playful cleverness—not necessarily with computers. The 
programmers in the old MIT free software community of the 60s and 70s referred to themselves as 
hackers. Around 1980, journalists who discovered the hacker community mistakenly took the term to 
mean “security breaker.” 

Please don't spread this mistake. People who break security are “crackers.” 

158

https://www.gnu.org/philosophy/fs-translations.html
https://www.gnu.org/philosophy/fs-translations.html
https://duckduckgo.com/
https://stallman.org/articles/on-hacking.html


“Intellectual property” 

Publishers and lawyers like to describe copyright as “intellectual property”—a term also applied to 
patents, trademarks, and other more obscure areas of law. These laws have so little in common, and 
differ so much, that it is ill-advised to generalize about them. It is best to talk specifically about 
“copyright,” or about “patents,” or about “trademarks.” 

The term “intellectual property” carries a hidden assumption—that the way to think about all these 
disparate issues is based on an analogy with physical objects, and our conception of them as physical 
property. 

When it comes to copying, this analogy disregards the crucial difference between material objects and 
information: information can be copied and shared almost effortlessly, while material objects can't be. 

To avoid spreading unnecessary bias and confusion, it is best to adopt a firm policy not to speak or even 
think in terms of “intellectual property”. 

The hypocrisy of calling these powers “rights” is starting to make the World “Intellectual Property” 
Organization embarrassed. 

“Internet of Things” 

When companies decided to make computerized appliances that would connect over the internet to 
the manufacturer's server, and therefore could easily snoop on their users, they realized that this would 
not sound very nice. So they came up with a cute, appealing name: the “Internet of Things.” 

Experience shows that these products often do spy on their users. They are also tailor-made for giving 
people biased advice. In addition, the manufacturer can sabotage the product by turning off the server 
it depends on. 

We call them the “Internet of Stings.” 

“LAMP system” 

“LAMP” stands for “Linux, Apache, MySQL and PHP”—a common combination of software to use 
on a web server, except that “Linux” in this context really refers to the GNU/Linux system. So instead 
of “LAMP” it should be “GLAMP”: “GNU, Linux, Apache, MySQL and PHP.” 

“Linux system” 

159

https://www.gnu.org/philosophy/not-ipr.html
https://www.gnu.org/philosophy/not-ipr.html
https://www.gnu.org/philosophy/wipo-PublicAwarenessOfCopyright-2002.html
https://www.gnu.org/philosophy/wipo-PublicAwarenessOfCopyright-2002.html
https://www.locusmag.com/Perspectives/2015/09/cory-doctorow-what-if-people-were-sensors-not-things-to-be-sensed/
https://archive.ieet.org/articles/rinesi20150806.html
https://archive.ieet.org/articles/rinesi20150806.html
https://www.gnu.org/proprietary/proprietary-sabotage.html


Linux is the name of the kernel that Linus Torvalds developed starting in 1991. The operating system 
in which Linux is used is basically GNU with Linux added. To call the whole system “Linux” is both 
unfair and confusing. Please call the complete system GNU/Linux, both to give the GNU Project 
credit and to distinguish the whole system from the kernel alone. 

“Market” 

It is misleading to describe the users of free software, or the software users in general, as a “market.” 

This is not to say there is no room for markets in the free software community. If you have a free 
software support business, then you have clients, and you trade with them in a market. As long as you 
respect their freedom, we wish you success in your market. 

But the free software movement is a social movement, not a business, and the success it aims for is not a 
market success. We are trying to serve the public by giving it freedom—not competing to draw business 
away from a rival. To equate this campaign for freedom to a business's efforts for mere success is to 
deny the importance of freedom and legitimize proprietary software. 

“Modern” 

The term “modern” makes sense from a descriptive perspective—for instance, solely to distinguish 
newer periods and ways from older ones. 

It becomes a problem when it carries the presumption that older ways are “old-fashioned”; that is, 
presumed to be worse. In technological fields where businesses make the choices and impose them on 
users, the reverse is often true. 

“Monetize” 

The proper definition of “monetize” is “to use something as currency.” For instance, human societies 
have monetized gold, silver, copper, printed paper, special kinds of seashells, and large rocks. However, 
we now see a tendency to use the word in another way, meaning “to use something as a basis for 
profit.” 

That usage casts the profit as primary, and the thing used to get the profit as secondary. That attitude 
applied to a software project is objectionable because it would lead the developers to make the program 
proprietary, if they conclude that making it free/libre isn't sufficiently profitable. 

A productive and ethical business can make money, but if it subordinates all else to profit, it is not 
likely to remain ethical. 

160

https://www.gnu.org/gnu/linux-and-gnu.html


“MP3 Player” 

In the late 1990s it became feasible to make portable, solid-state digital audio players. Most players 
supported the patented MP3 codec, and that is still the case. Some players also supported the patent-
free audio codecs Ogg Vorbis and FLAC, and a few couldn't play MP3-encoded files at all because their 
developers needed to protect themselves from the patents on MP3 format. 

Using the term “MP3 players” for audio players in general has the effect of promoting the MP3 format 
and discouraging the other formats (some of which are technically superior as well). Even though the 
MP3 patents have expired, it is still undesirable to do that. 

We suggest the term “digital audio player,” or simply “audio player” when that's clear enough, instead 
of “MP3 player.” 

“Open” 

Please avoid using the term “open” or “open source” as a substitute for “free software.” Those terms 
refer to a different set of views based on different values. The free software movement campaigns for 
your freedom in your computing, as a matter of justice. The open source non-movement does not 
campaign for anything in this way. 

When referring to the open source views, it's correct to use that name, but please do not use that term 
when talking about us, our software, or our views—that leads people to suppose our views are similar 
to theirs. 

Instead of open source, we say, free software or free (libre) software. 

“Opt out” 

When applied to any form of computational mistreatment, “opt out” implies the choice is a minor 
matter of convenience. We recommend “reject,” “shun” or “escape from.” 

“PC” 

It's OK to use the abbreviation “PC” to refer to a certain kind of computer hardware, but please don't 
use it with the implication that the computer is running Microsoft Windows. If you install GNU/
Linux on the same computer, it is still a PC. 

The term “WC” has been suggested for a computer running Windows. 

161

https://www.gnu.org/philosophy/open-source-misses-the-point.html


“Photoshop” 

Please avoid using the term “photoshop” as a verb, meaning any kind of photo manipulation or image 
editing in general. Photoshop is just the name of one particular image editing program, which should 
be avoided since it is proprietary. There are plenty of free programs for editing images, such as the 
GIMP. 

“Players” (said of businesses) 

To describe businesses as “players” presumes that they are motivated purely and simply by “winning” 
what they treat as a poker-like game—in effect, subordinating all else to profit. Often businesses (and 
their executives) do act that way, but not always, and we often pressure them to respect other values as 
well. 

The moral cynicism of “players” resonates with a general condemnation of business, which to some 
extent business in general deserves; at the same time, it tends to dissuade the attempt to judge any 
business's acts or practices in moral terms. Even to raise the question of whether a certain business 
treats people unjustly is dissuaded by the “players” metaphor's murmuring, in the background, “Why 
bother asking?” let's avoid that metaphor. 

“Piracy” 

Publishers often refer to copying they don't approve of as “piracy.” In this way, they imply that it is 
ethically equivalent to attacking ships on the high seas, kidnapping and murdering the people on them. 
Based on such propaganda, they have procured laws in most of the world to forbid copying in most (or 
sometimes all) circumstances. (They are still pressuring to make these prohibitions more complete.) 

If you don't believe that copying not approved by the publisher is just like kidnapping and murder, you 
might prefer not to use the word “piracy” to describe it. Neutral terms such as “unauthorized copying” 
(or “prohibited copying” for the situation where it is illegal) are available for use instead. Some of us 
might even prefer to use a positive term such as “sharing information with your neighbor.” 

A US judge, presiding over a trial for copyright infringement, recognized that “piracy” and “theft” are 
smear words. 

“PowerPoint” 

Please avoid using the term “PowerPoint” to mean any kind of slide presentation. “PowerPoint” is just 
the name of one particular proprietary program to make presentations. For your freedom's sake, you 

162

https://www.gimp.org/
https://torrentfreak.com/mpaa-banned-from-using-piracy-and-theft-terms-in-hotfile-trial-131129/
https://torrentfreak.com/mpaa-banned-from-using-piracy-and-theft-terms-in-hotfile-trial-131129/


should use only free software to make your presentations—which means, not PowerPoint. 
Recommended options include LaTeX's beamer class and LibreOffice Impress. 

“Product” 

If you're talking about a product, by all means call it that. However, when referring to a service, please 
do not call it a “product.” If a service provider calls the service a “product,” please firmly insist on 
calling it a “service.” If a service provider calls a package deal a “product,” please firmly insist on calling 
it a “deal.” 

“Protection” 

Publishers' lawyers love to use the term “protection” to describe copyright. This word carries the 
implication of preventing destruction or suffering; therefore, it encourages people to identify with the 
owner and publisher who benefit from copyright, rather than with the users who are restricted by it. 

It is easy to avoid “protection” and use neutral terms instead. For example, instead of saying, 
“Copyright protection lasts a very long time,” you can say, “Copyright lasts a very long time.” 

Likewise, instead of saying, “protected by copyright,” you can say, “covered by copyright” or just 
“copyrighted.” 

If you want to criticize copyright rather than be neutral, you can use the term “copyright restrictions.” 
Thus, you can say, “Copyright restrictions last a very long time.” 

The term “protection” is also used to describe malicious features. For instance, “copy protection” is a 
feature that interferes with copying. From the user's point of view, this is obstruction. So we could call 
that malicious feature “copy obstruction.” More often it is called Digital Restrictions Management 
(DRM)—see the Defective by Design campaign. 

“RAND (Reasonable and Non-Discriminatory)” 

Standards bodies that promulgate patent-restricted standards that prohibit free software typically have 
a policy of obtaining patent licenses that require a fixed fee per copy of a conforming program. They 
often refer to such licenses by the term “RAND,” which stands for “reasonable and non-
discriminatory.” 

163

https://defectivebydesign.org/


That term whitewashes a class of patent licenses that are normally neither reasonable nor 
nondiscriminatory. It is true that these licenses do not discriminate against any specific person, but 
they do discriminate against the free software community, and that makes them unreasonable. Thus, 
half of the term “RAND” is deceptive and the other half is prejudiced. 

Standards bodies should recognize that these licenses are discriminatory, and drop the use of the term 
“reasonable and non-discriminatory” or “RAND” to describe them. Until they do so, writers who do 
not wish to join in the whitewashing would do well to reject that term. To accept and use it merely 
because patent-wielding companies have made it widespread is to let those companies dictate the views 
you express. 

We suggest the term “uniform fee only,” or “UFO” for short, as a replacement. It is accurate because 
the only condition in these licenses is a uniform royalty fee. 

“SaaS” or “Software as a Service” 

We used to say that SaaS (short for “Software as a Service”) is an injustice, but then we found that there 
was a lot of variation in people's understanding of which activities count as SaaS. So we switched to a 
new term, “Service as a Software Substitute” or “SaaSS.” This term has two advantages: it wasn't used 
before, so our definition is the only one, and it explains what the injustice consists of. 

See Who Does That Server Really Serve? for discussion of this issue. 

In Spanish we continue to use the term “software como servicio” because the joke of “software como 
ser vicio” (“software, as being pernicious”) is too good to give up. 

“Sell software” 

The term “sell software” is ambiguous. Strictly speaking, exchanging a copy of a free program for a sum 
of money is selling the program, and there is nothing wrong with doing that. However, people usually 
associate the term “selling software” with proprietary restrictions on the subsequent use of the 
software. You can be clear, and prevent confusion, by saying either “distributing copies of a program 
for a fee” or “imposing proprietary restrictions on the use of a program.” 

See Selling Free Software for further discussion of this issue. 

“Sharing (personal data)” 

When companies manipulate or lure people into revealing personal data and thus ceding their privacy, 
please don't refer to this as “sharing.” We use the term “sharing” to refer to noncommercial 

164

https://www.gnu.org/philosophy/who-does-that-server-really-serve.html
https://www.gnu.org/philosophy/selling.html
https://www.gnu.org/philosophy/selling.html


cooperation, including noncommercial redistribution of exact copies of published works, and we say 
this is good. Please don't apply that word to a practice which is harmful and dangerous. 

When one company redistributes collected personal data to another company, that is even less 
deserving of the term “sharing.” 

“Sharing economy” 

The term “sharing economy” is not a good way to refer to services such as Uber and Airbnb that 
arrange business transactions between people. We use the term “sharing” to refer to noncommercial 
cooperation, including noncommercial redistribution of exact copies of published works. Stretching 
the word “sharing” to include these transactions undermines its meaning, so we don't use it in this 
context. 

A more suitable term for businesses like Uber is the “piecework service economy” or “gig economy.” 

“Skype” 

Please avoid using the term “skype” as a verb, meaning any kind of video communication or telephony 
over the Internet in general. “Skype” is just the name of one particular proprietary program, one that 
spies on its users. If you want to make video and voice calls over the Internet in a way that respects both 
your freedom and your privacy, try one of the numerous free Skype replacements. 

“Smart speaker” 

This term is totally absurd. It refers to products that listen and understand voice commands; they also 
have a speaker for speaking output from those commands. Their primary function is to listen to 
commands. Let's call them “voice command listeners.” 

“Software Industry” 

The term “software industry” encourages people to imagine that software is always developed by a sort 
of factory and then delivered to “consumers.” The free software community shows this is not the case. 
Software businesses exist, and various businesses develop free and/or nonfree software, but those that 
develop free software are not run like factories. 

The term “industry” is being used as propaganda by advocates of software patents. They call software 
development “industry” and then try to argue that this means it should be subject to patent 
monopolies. The European Parliament, rejecting software patents in 2003, voted to define “industry” 
as “automated production of material goods.” 

165

https://www.gnu.org/philosophy/proprietary/proprietary-surveillance.html#SpywareInSkype
https://libreplanet.org/wiki/Group:Skype_Replacement
https://web.archive.org/web/20071215073111/http://eupat.ffii.org/papers/europarl0309/
https://web.archive.org/web/20071215073111/http://eupat.ffii.org/papers/europarl0309/
https://web.archive.org/web/20071215073111/http://eupat.ffii.org/papers/europarl0309/


“Source model” 

Wikipedia uses the term “source model” in a confused and ambiguous way. Ostensibly it refers to how 
a program's source is distributed, but the text confuses this with the development methodology. It 
distinguishes “open source” and ”shared source” as answers, but they overlap—Microsoft uses the 
latter as a marketing term to cover a range of practices, some of which are “open source.” Thus, this 
term really conveys no coherent information, but it provides an opportunity to say “open source” in 
pages describing free software programs. 

“Theft” 

The supporters of a too-strict, repressive form of copyright often use words like “stolen” and “theft” to 
refer to copyright infringement. This is spin, but they would like you to take it for objective truth. 

Under the US legal system, copyright infringement is not theft. Laws about theft are not applicable to 
copyright infringement. The supporters of repressive copyright are making an appeal to authority—
and misrepresenting what authority says. 

To refute them, you can point to this real case which shows what can properly be described as 
“copyright theft.” 

Unauthorized copying is forbidden by copyright law in many circumstances (not all!), but being 
forbidden doesn't make it wrong. In general, laws don't define right and wrong. Laws, at their best, 
attempt to implement justice. If the laws (the implementation) don't fit our ideas of right and wrong 
(the spec), the laws are what should change. 

A US judge, presiding over a trial for copyright infringement, recognized that “piracy” and “theft” are 
smear-words. 

“Trusted Computing” 

“Trusted computing” is the proponents' name for a scheme to redesign computers so that application 
developers can trust your computer to obey them instead of you. From their point of view, it is 
“trusted”; from your point of view, it is “treacherous.” 

“Vendor” 

Please don't use the term “vendor” to refer generally to anyone that develops or packages software. 
Many programs are developed in order to sell copies, and their developers are therefore their vendors; 
this even includes some free software packages. However, many programs are developed by volunteers 
or organizations which do not intend to sell copies. These developers are not vendors. Likewise, only 

166

https://caselaw.findlaw.com/us-supreme-court/473/207.html
https://caselaw.findlaw.com/us-supreme-court/473/207.html
https://www.guardian.co.uk/books/2013/may/04/harper-lee-kill-mockingbird-copyright
https://torrentfreak.com/mpaa-banned-from-using-piracy-and-theft-terms-in-hotfile-trial-131129/
https://torrentfreak.com/mpaa-banned-from-using-piracy-and-theft-terms-in-hotfile-trial-131129/
https://www.gnu.org/philosophy/can-you-trust.html


some of the packagers of GNU/Linux distributions are vendors. We recommend the general term 
“supplier” instead. 

- END OF CHAPTER 

167



Thank you for reading the book! 

168



 https://www.gnu.org/philosophy/selling.html1

 https://www.gnu.org/philosophy/free-software-even-more-important.html2

 https://www.gnu.org/philosophy/open-source-misses-the-point.html3

 https://www.gnu.org/philosophy/free-sw.html#History4

 https://www.gnu.org/philosophy/free-sw.html#f15

 https://www.gnu.org/philosophy/free-sw.html#exportcontrol6

 https://www.gnu.org/licenses/copyleft.html7

 https://www.gnu.org/philosophy/pragmatic.html8

 https://www.gnu.org/philosophy/categories.html#Non-CopyleftedFreeSoftware9

 https://www.gnu.org/philosophy/categories.html10

 https://www.gnu.org/licenses/license-list.html11

 https://www.gnu.org/philosophy/words-to-avoid.html12

 https://www.gnu.org/philosophy/fs-translations.html13

 https://www.gnu.org/philosophy/free-doc.html14

 https://wikipedia.org/15

 https://freedomdefined.org/16

 https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?17

root=www&view=log

 https://www.gnu.org/malware18

 https://www.gnu.org/philosophy/loyal-computers.html19

 https://observer.com/2016/06/how-technology-hijacks-peoples-minds - from-a-magician-20

and-googles-design-ethicist/

 https://www.gnu.org/philosophy/free-sw.html21

 https://www.gnu.org/philosophy/why-call-it-the-swindle.html22

 https://archive.ieet.org/articles/rinesi20150806.html23

 https://www.gnu.org/gnu/thegnuproject.html24

 https://www.gnu.org/gnu/gnu-linux-faq.html25

 https://www.gnu.org/philosophy/who-does-that-server-really-serve.html26

 https://arstechnica.com/information-technology/2013/06/nsa-gets-early-access-to-zero-27

day-data-from-microsoft-others/

169

https://www.gnu.org/philosophy/free-sw.html#f1
https://www.gnu.org/philosophy/categories.html
https://www.gnu.org/licenses/copyleft.html
https://www.gnu.org/philosophy/pragmatic.html
https://www.gnu.org/philosophy/why-call-it-the-swindle.html
https://archive.ieet.org/articles/rinesi20150806.html
https://www.gnu.org/malware
https://www.gnu.org/philosophy/free-sw.html#exportcontrol
https://www.gnu.org/licenses/license-list.html
https://www.gnu.org/philosophy/fs-translations.html
https://www.gnu.org/philosophy/who-does-that-server-really-serve.html
https://www.gnu.org/philosophy/words-to-avoid.html
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&view=log
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&view=log
https://web.cvs.savannah.gnu.org/viewvc/www/philosophy/free-sw.html?root=www&view=log
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html#History
https://www.gnu.org/philosophy/loyal-computers.html
https://www.gnu.org/philosophy/free-doc.html
https://www.gnu.org/philosophy/categories.html#Non-CopyleftedFreeSoftware
https://www.gnu.org/gnu/thegnuproject.html
https://www.gnu.org/gnu/gnu-linux-faq.html


 https://www.gnu.org/philosophy/government-free-software.html28

 https://www.gnu.org/education/education.html29

 https://www.gnu.org/licenses/license-recommendations.html30

 https://www.gnu.org/help/help.html31

 https://www.gnu.org/philosophy/saying-no-even-once.html32

 https://www.gnu.org/philosophy/free-sw.html33

 https://www.gnu.org/philosophy/categories.html#ProprietarySoftware34

 https://www.fsf.org/35

 https://savannah.gnu.org/projects/tasklist36

 https://www.gnu.org/doc/doc.html37

 https://www.gnu.org/philosophy/words-to-avoid.html#SellSoftware38

 https://www.gnu.org/licenses/gpl.html39

 https://www.gnu.org/licenses/gpl.html#section640

 https://badvista.fsf.org/41

 https://www.gnu.org/proprietary/malware-microsoft.html42

 https://www.fsf.org/windows43

 https://www.gnu.org/proprietary/malware-apple.html44

 https://www.techworm.net/2013/06/nsa-built-back-door-in-microsofts-all.html45

 https://www.gnu.org/gnu/linux-and-gnu.html46

 https://www.gnu.org/gnu/gnu.html47

 https://www.gnu.org/distros/distros.html48

 https://www.gnu.org/licenses/license-list.html49

 https://www.gnu.org/philosophy/free-open-overlap.html50

 https://libreboot.org/faq.html#intelme51

 https://www.gnu.org/proprietary/proprietary-insecurity.html#uefi-rootkit52

 https://www.gnu.org/licenses/quick-guide-gplv3.html53

 https://www.gnu.org/distros/free-system-distribution-guidelines.html54

 https://www.gnu.org/software/repo-criteria.html55

 https://sv.gnu.org/56

 https://www.gnu.org/philosophy/compromise.html57

170

https://www.gnu.org/philosophy/free-open-overlap.html
https://www.gnu.org/proprietary/malware-microsoft.html
https://www.gnu.org/licenses/quick-guide-gplv3.html
https://www.gnu.org/licenses/license-list.html
https://www.gnu.org/licenses/gpl.html#section6
https://www.gnu.org/philosophy/government-free-software.html
https://www.gnu.org/gnu/gnu.html
https://savannah.gnu.org/projects/tasklist
https://libreboot.org/faq.html#intelme
https://www.gnu.org/licenses/gpl.html
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/help/help.html
https://www.gnu.org/philosophy/words-to-avoid.html#SellSoftware
https://www.gnu.org/distros/distros.html
https://www.gnu.org/doc/doc.html
https://www.gnu.org/proprietary/malware-apple.html
https://www.fsf.org/windows
https://www.gnu.org/proprietary/proprietary-insecurity.html#uefi-rootkit
https://www.gnu.org/education/education.html
https://www.gnu.org/philosophy/categories.html#ProprietarySoftware
https://www.gnu.org/software/repo-criteria.html
https://www.techworm.net/2013/06/nsa-built-back-door-in-microsofts-all.html
https://www.gnu.org/philosophy/saying-no-even-once.html
https://www.gnu.org/distros/free-system-distribution-guidelines.html
https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/licenses/license-recommendations.html


 https://www.gnu.org/philosophy/free-doc.html58

 https://gcc.gnu.org/ml/gcc/2014-01/msg00247.html59

 https://directory.fsf.org/wiki/IceCat60

 https://www.gnu.org/distros61

 https://www.fsf.org/resources/hw/endorsement/criteria62

 https://www.gnu.org/philosophy/javascript-trap.html63

 https://www.gnu.org/software/librejs64

 https://www.gnu.org/gnu/thegnuproject.html65

 https://www.gnu.org/licenses/gpl-2.0.html66

 https://www.gnu.org/licenses/license-list.html#apache267

 https://arstechnica.com/gadgets/2013/10/googles-iron-grip-on-android-controlling-open-68

source-by-any-means-necessary/

 https://www.greenbot.com/new-google-play-edition-devices-lack-photo-gallery-app-use-69

google/

 https://arstechnica.com/gadgets/2014/06/android-wear-auto-and-tv-save-you-from-skins-70

and-oems-from-themselves/

 https://blog.grobox.de/2016/the-proprietarization-of-android-google-play-services-and-71

apps/

 https://www.beneaththewaves.net/Projects/Motorola_Is_Listening.html72

 https://androidsecuritytest.com/features/logs-and-services/loggers/carrieriq/73

 https://replicant.us/74

 ftp://ftp.cs.wisc.edu/pub/paradyn/technical_papers/fuzz-revisited.ps75

 https://shop.fsf.org/category/books/76

 https://www.gnu.org/doc/doc.html77

 https://www.gnu.org/licenses/fdl.html78

 https://www.gnu.org/doc/other-free-books.html79

 https://www.theverge.com/2019/6/18/18683455/nasa-space-angels-contracts-government-80

investment-spacex-air-force

 https://www.gnu.org/proprietary/proprietary-surveillance.html81

 https://web.archive.org/web/20211106213411/http://www.clifford.at/icestorm/82

 https://gothub.projectsegfau.lt/Wolfgang-Spraul/fpgatools/83

 https://ryf.fsf.org/84

171

https://www.gnu.org/philosophy/javascript-trap.html
https://gcc.gnu.org/ml/gcc/2014-01/msg00247.html
https://www.gnu.org/gnu/thegnuproject.html
https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/software/librejs
https://www.gnu.org/doc/doc.html
https://www.gnu.org/philosophy/free-doc.html
https://www.gnu.org/licenses/fdl.html
https://www.gnu.org/distros
https://www.fsf.org/resources/hw/endorsement/criteria
https://www.theverge.com/2019/6/18/18683455/nasa-space-angels-contracts-government-investment-spacex-air-force
https://www.theverge.com/2019/6/18/18683455/nasa-space-angels-contracts-government-investment-spacex-air-force
https://www.theverge.com/2019/6/18/18683455/nasa-space-angels-contracts-government-investment-spacex-air-force
ftp://ftp.cs.wisc.edu/pub/paradyn/technical_papers/fuzz-revisited.ps
https://www.gnu.org/proprietary/proprietary-surveillance.html


 https://www.copyright.gov/title17/92chap13.html#130185

 https://www.gnu.org/philosophy/not-ipr.html86

 https://en.wikipedia.org/wiki/STL_(file_format)87

 https://web.archive.org/web/20211203021432/https://www.publicknowledge.org/assets/88

uploads/documents/3_Steps_for_Licensing_Your_3D_Printed_Stuff.pdf

 https://www.gnu.org/philosophy/words-to-avoid.html#Protection89

 https://www.gnu.org/licenses/why-affero-gpl.html90

 en.wikipedia.org/wiki/Gnutella91

 https://www.gnu.org/philosophy/categories.html#GNUsoftware92

 https://sourceforge.net/projects/gtk-gnutella/93

 https://sourceforge.net/projects/mutella/94

 https://sourceforge.net/projects/gnucleus/95

 https://www.gnu.org/software/gnunet/96

 https://web.archive.org/web/20180616130316/https://gnunet.org/compare97

 https://www.gnu.org/philosophy/essays-and-articles.html#Laws98

 https://www.gnu.org/philosophy/third-party-ideas.html99

 https://www.gnu.org/philosophy/reevaluating-copyright.html100

 https://www.gnu.org/philosophy/java-trap.html101

 https://www.gnu.org/software/health/102

 https://www.tryton.org/103

 https://www.gnu.org/philosophy/surveillance-vs-democracy.html104

 https://stallman.org/articles/on-hacking.html105

 https://www.gnu.org/philosophy/saying-no-even-once.html106

 https://linuxinsider.com/story/Open-Source-Is-Woven-Into-the-Latest-Hottest-107

Trends-78937.html

 https://opensource.org/osd108

 https://web.archive.org/web/20001011193422/http://da.state.ks.us/ITEC/109

TechArchPt6ver80.pdf

 https://www.nytimes.com/external/gigaom/2009/02/07/07gigaom-the-brave-new-world-of-110

open-source-game-design-37415.html

 https://www.theguardian.com/sustainable-business/2015/aug/27/texas-teenager-water-111

purifier-toxic-e-waste-pollution

172

https://www.gnu.org/philosophy/not-ipr.html
https://www.copyright.gov/title17/92chap13.html#1301
https://stallman.org/articles/on-hacking.html
https://www.gnu.org/philosophy/essays-and-articles.html#Laws
https://linuxinsider.com/story/Open-Source-Is-Woven-Into-the-Latest-Hottest-Trends-78937.html
https://linuxinsider.com/story/Open-Source-Is-Woven-Into-the-Latest-Hottest-Trends-78937.html
https://linuxinsider.com/story/Open-Source-Is-Woven-Into-the-Latest-Hottest-Trends-78937.html
https://opensource.org/osd
https://www.gnu.org/licenses/why-affero-gpl.html
https://www.nytimes.com/external/gigaom/2009/02/07/07gigaom-the-brave-new-world-of-open-source-game-design-37415.html
https://www.nytimes.com/external/gigaom/2009/02/07/07gigaom-the-brave-new-world-of-open-source-game-design-37415.html
https://www.nytimes.com/external/gigaom/2009/02/07/07gigaom-the-brave-new-world-of-open-source-game-design-37415.html
https://web.archive.org/web/20001011193422/http://da.state.ks.us/ITEC/TechArchPt6ver80.pdf
https://web.archive.org/web/20001011193422/http://da.state.ks.us/ITEC/TechArchPt6ver80.pdf
https://web.archive.org/web/20001011193422/http://da.state.ks.us/ITEC/TechArchPt6ver80.pdf
https://www.gnu.org/philosophy/categories.html#GNUsoftware
https://www.gnu.org/philosophy/surveillance-vs-democracy.html
https://www.gnu.org/philosophy/java-trap.html
https://www.gnu.org/philosophy/third-party-ideas.html
http://en.wikipedia.org/wiki/Gnutella
https://www.gnu.org/philosophy/words-to-avoid.html#Protection
https://www.theguardian.com/sustainable-business/2015/aug/27/texas-teenager-water-purifier-toxic-e-waste-pollution
https://www.theguardian.com/sustainable-business/2015/aug/27/texas-teenager-water-purifier-toxic-e-waste-pollution
https://www.theguardian.com/sustainable-business/2015/aug/27/texas-teenager-water-purifier-toxic-e-waste-pollution
https://www.gnu.org/philosophy/reevaluating-copyright.html
https://www.gnu.org/philosophy/saying-no-even-once.html
https://web.archive.org/web/20211203021432/https://www.publicknowledge.org/assets/uploads/documents/3_Steps_for_Licensing_Your_3D_Printed_Stuff.pdf
https://web.archive.org/web/20211203021432/https://www.publicknowledge.org/assets/uploads/documents/3_Steps_for_Licensing_Your_3D_Printed_Stuff.pdf
https://web.archive.org/web/20211203021432/https://www.publicknowledge.org/assets/uploads/documents/3_Steps_for_Licensing_Your_3D_Printed_Stuff.pdf
https://web.archive.org/web/20180616130316/https://gnunet.org/compare


 https://www.nytimes.com/2013/03/17/opinion/sunday/morozov-open-and-closed.html112

 https://www.gnu.org/philosophy/floss-and-foss.html113

 https://web.archive.org/web/20010618050431/itworld.com/AppDev/350/114

LWD010523vcontrol4/pfindex.html

 https://ocw.mit.edu/courses/sloan-school-of-management/15-352-managing-innovation-115

emerging-trends-spring-2005/readings/lakhaniwolf.pdf

 https://www.defectivebydesign.org/what_is_drm_digital_restrictions_management116

 https://www.gnu.org/proprietary/proprietary-jails.html117

 https://www.gnu.org/philosophy/technological-neutrality.html118

 https://www.fsf.org/blogs/community/better-than-zoom-try-these-free-software-tools-for-119

staying-in-touch

 https://www.gnu.org/philosophy/x.html120

 https://github.com/w3c/fingerprinting-guidance/issues/8121

 https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-122

session-replay-scripts/

 https://www.gnu.org/licenses/javascript-labels.html123

 https://books.google.com/ngrams/graph?124

content=intellectual+property&year_start=1800&year_end=2008&corpus=15&smoothing=1&sh
are=&direct_url=t1;,intellectual property;,c0

 https://www.gnu.org/graphics/seductivemirage.png125

 https://www.theguardian.com/us-news/2017/mar/11/nebraska-farmers-right-to-repair-bill-126

stalls-apple

 https://fsfe.org/activities/wipo/wiwo.en.html127

 https://web.archive.org/web/20140217075603/http://bluraysucks.com/128

 https://www.gnu.org/philosophy/no-word-attachments.html129

 https://www.cl.cam.ac.uk/~rja14/tcpa-faq.html130

 https://developer.android.com/privacy-and-security/safetynet/attestation131

 https://developer.android.com/privacy-and-security/safetynet/deprecation-timeline132

 https://grapheneos.org/articles/attestation-compatibility-guide133

 https://www.defectivebydesign.org/134

 https://www.gnu.org/philosophy/proprietary-surveillance.html135

 https://slate.com/technology/2013/09/privacy-facebook-kids-dont-post-photos-of-your-136

kids-on-social-media.html

173

https://www.gnu.org/philosophy/floss-and-foss.html
https://github.com/w3c/fingerprinting-guidance/issues/8
https://ocw.mit.edu/courses/sloan-school-of-management/15-352-managing-innovation-emerging-trends-spring-2005/readings/lakhaniwolf.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-352-managing-innovation-emerging-trends-spring-2005/readings/lakhaniwolf.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-352-managing-innovation-emerging-trends-spring-2005/readings/lakhaniwolf.pdf
https://www.defectivebydesign.org/what_is_drm_digital_restrictions_management
https://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
https://www.gnu.org/graphics/seductivemirage.png
https://www.gnu.org/philosophy/technological-neutrality.html
https://grapheneos.org/articles/attestation-compatibility-guide
https://web.archive.org/web/20010618050431/itworld.com/AppDev/350/LWD010523vcontrol4/pfindex.html
https://web.archive.org/web/20010618050431/itworld.com/AppDev/350/LWD010523vcontrol4/pfindex.html
https://web.archive.org/web/20010618050431/itworld.com/AppDev/350/LWD010523vcontrol4/pfindex.html
https://developer.android.com/privacy-and-security/safetynet/attestation
https://www.fsf.org/blogs/community/better-than-zoom-try-these-free-software-tools-for-staying-in-touch
https://www.fsf.org/blogs/community/better-than-zoom-try-these-free-software-tools-for-staying-in-touch
https://www.fsf.org/blogs/community/better-than-zoom-try-these-free-software-tools-for-staying-in-touch
https://www.gnu.org/philosophy/x.html
https://developer.android.com/privacy-and-security/safetynet/deprecation-timeline
https://slate.com/technology/2013/09/privacy-facebook-kids-dont-post-photos-of-your-kids-on-social-media.html
https://slate.com/technology/2013/09/privacy-facebook-kids-dont-post-photos-of-your-kids-on-social-media.html
https://slate.com/technology/2013/09/privacy-facebook-kids-dont-post-photos-of-your-kids-on-social-media.html
https://www.nytimes.com/2013/03/17/opinion/sunday/morozov-open-and-closed.html
https://www.gnu.org/philosophy/no-word-attachments.html
https://www.gnu.org/licenses/javascript-labels.html
https://www.gnu.org/proprietary/proprietary-jails.html
https://www.gnu.org/philosophy/proprietary-surveillance.html
https://fsfe.org/activities/wipo/wiwo.en.html
https://www.theguardian.com/us-news/2017/mar/11/nebraska-farmers-right-to-repair-bill-stalls-apple
https://www.theguardian.com/us-news/2017/mar/11/nebraska-farmers-right-to-repair-bill-stalls-apple
https://www.theguardian.com/us-news/2017/mar/11/nebraska-farmers-right-to-repair-bill-stalls-apple


 https://www.theguardian.com/business/2023/nov/05/cloud-service-provider-consumer-137

prices-netflix-microsoft

 https://opendefinition.org/ossd/138

 https://www.mindprison.cc/p/the-question-that-no-llm-can-answer139

 https://link.springer.com/article/10.1007/s10676-024-09775-5140

 https://www.theguardian.com/environment/2024/apr/03/early-warning-system-track-asian-141

hornets-university-of-exeter

 https://www.theguardian.com/society/article/2024/aug/19/ai-may-help-experts-identify-142

toddlers-at-risk-of-autism-researchers-say

 https://www.theguardian.com/technology/article/2024/jul/25/google-deepmind-takes-step-143

closer-to-cracking-top-level-maths

174

https://www.theguardian.com/environment/2024/apr/03/early-warning-system-track-asian-hornets-university-of-exeter
https://www.theguardian.com/environment/2024/apr/03/early-warning-system-track-asian-hornets-university-of-exeter
https://www.theguardian.com/environment/2024/apr/03/early-warning-system-track-asian-hornets-university-of-exeter
https://www.theguardian.com/technology/article/2024/jul/25/google-deepmind-takes-step-closer-to-cracking-top-level-maths
https://www.theguardian.com/technology/article/2024/jul/25/google-deepmind-takes-step-closer-to-cracking-top-level-maths
https://www.theguardian.com/technology/article/2024/jul/25/google-deepmind-takes-step-closer-to-cracking-top-level-maths
https://www.theguardian.com/society/article/2024/aug/19/ai-may-help-experts-identify-toddlers-at-risk-of-autism-researchers-say
https://www.theguardian.com/society/article/2024/aug/19/ai-may-help-experts-identify-toddlers-at-risk-of-autism-researchers-say
https://www.theguardian.com/society/article/2024/aug/19/ai-may-help-experts-identify-toddlers-at-risk-of-autism-researchers-say
https://www.theguardian.com/business/2023/nov/05/cloud-service-provider-consumer-prices-netflix-microsoft
https://www.theguardian.com/business/2023/nov/05/cloud-service-provider-consumer-prices-netflix-microsoft
https://www.theguardian.com/business/2023/nov/05/cloud-service-provider-consumer-prices-netflix-microsoft

	Chapter I: What is Free Software?
	Chapter II: Free Software Is Even More Important Now
	Chapter III: Selling Free Software
	Chapter IV: Why programs must not limit the freedom to run them
	Chapter V: Your Freedom Needs Free Software
	Chapter VI: Why Software Should Not Have Owners
	Chapter VII: Tivoization
	Chapter VIII: When Free Software Isn't (Practically) Superior
	Chapter IX: Applying the Free Software Criteria
	Chapter X: Imperfection is not the same as oppression
	Chapter XI: Android and Users' Freedom
	Chapter XII: Free Software is More Reliable!
	Chapter XIII: Why Free Software Needs Free Documentation
	Chapter XIV: Should Rockets Have Only Free Software? Free Software and Appliances
	Chapter XV: Free Hardware and Free Hardware Designs
	Chapter XVI: What Does It Mean for Your Computer to Be Loyal?
	Chapter XVII: Network Services Aren't Free or Nonfree; They Raise Other Issues
	Chapter XVIII: Regarding Gnutella
	Chapter XIX: When Free Software Depends on Nonfree
	Chapter XX: Is It Ever a Good Thing to Use a Nonfree Program?
	Chapter XXI: The Free Software Movement and UDI
	Chapter XXII: Why Open Source Misses the Point of Free Software
	Chapter XXIII: FLOSS and FOSS
	Chapter XXIV: Measures Governments Can Use to Promote Free Software
	Chapter XXV: Why Schools Should Exclusively Use Free Software
	Chapter XXVI: Technological Neutrality and Free Software
	Chapter XXVII: The Moral and the Legal
	Chapter XXVIII: Saying No to unjust computing even once is help
	Chapter XXIX: Motives For Writing Free Software
	Chapter XXX: Why Copyleft?
	Chapter XXXI: Copyleft: Pragmatic Idealism
	Chapter XXXII: The JavaScript Trap
	Chapter XXXIII: Giving the Software Field Protection from Patents
	Chapter XXXIV: Misinterpreting Copyright—A Series of Errors
	Chapter XXXV: Did You Say “Intellectual Property”? It's a Seductive Mirage
	Chapter XXXVI: Opposing Digital Rights Mismanagement (Or Digital Restrictions Management, as we now call it)
	Chapter XXXVII: Can You Trust Your Computer?
	Chapter XXXVIII: Who Does That Server Really Serve?
	Chapter XXXIX: Words to Avoid (or Use with Care) Because They Are Loaded or Confusing

